Self-assembled superstructure of carbon-wrapped, single-crystalline Cu3P porous nanosheets: One-step synthesis and enhanced Li-ion battery anode performance

Abstract Robust superstructures of self-assembling nanoscale building blocks are of functional and practical interest for improving the performance of materials in various advanced technological applications. Herein, we successfully synthesize a self-assembled, three-dimensional (3D) superstructure of carbon-wrapped, single-crystalline Cu3P porous nanosheets by one-step heat treatment of Cu foam with a phosphorus-containing resin. In this 3D superstructure, continuous single-crystalline Cu3P sheets are wrapped by uniform 5 nm-thick carbon shells (

[1]  D. Portehault,et al.  Nanoscaled metal borides and phosphides: recent developments and perspectives. , 2013, Chemical reviews.

[2]  Lin Gu,et al.  Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. , 2012, Journal of the American Chemical Society.

[3]  Abdullah M. Asiri,et al.  Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. , 2014, Angewandte Chemie.

[4]  H. Ahn,et al.  Mesoporous LiFePO4/C Nanocomposite Cathode Materials for High Power Lithium Ion Batteries with Superior Performance , 2010, Advanced materials.

[5]  T. Takamura,et al.  Effect of a vacuum-deposited metal film on the CV of the Li insertion/extraction reaction at a graphitized carbon fiber electrode , 2002 .

[6]  Chaofeng Liu,et al.  Fast and Reversible Li Ion Insertion in Carbon‐Encapsulated Li3VO4 as Anode for Lithium‐Ion Battery , 2015 .

[7]  Ali Ghorbani Kashkooli,et al.  Implementing an in-situ carbon network in Si/reduced graphene oxide for high performance lithium-ion battery anodes , 2016 .

[8]  Mingmei Wu,et al.  Ultrathin Anatase TiO2 Nanosheets Embedded with TiO2‐B Nanodomains for Lithium‐Ion Storage: Capacity Enhancement by Phase Boundaries , 2015 .

[9]  L. Monconduit,et al.  Redox mechanism in the binary transition metal phosphide Cu3P , 2006 .

[10]  Ya‐Xia Yin,et al.  Advanced Se–C nanocomposites: a bifunctional electrode material for both Li–Se and Li-ion batteries , 2014 .

[11]  Kai Jiang,et al.  Fabrication of novel copper phosphide (Cu3P) hollow spheres by a simple solvothermal method , 2007 .

[12]  F. Favier,et al.  Cu3P as anode material for lithium ion battery: powder morphology and electrochemical performances , 2004 .

[13]  Lulu Zhang,et al.  Preparation of Cu2O–Cu anode for high performance Li-ion battery via an electrochemical corrosion method , 2013 .

[14]  M. Orenstein,et al.  InP Nanoflag Growth from a Nanowire Template by in Situ Catalyst Manipulation. , 2016, Nano letters.

[15]  Vinodkumar Etacheri,et al.  Chemically bonded TiO2-bronze nanosheet/reduced graphene oxide hybrid for high-power lithium ion batteries. , 2014, ACS nano.

[16]  Jianjun Ma,et al.  The fine electrochemical performance of porous Cu3P/Cu and the high energy density of Cu3P as anode for Li-ion batteries , 2014 .

[17]  F. Liang,et al.  Self-Supported Cedarlike Semimetallic Cu3P Nanoarrays as a 3D High-Performance Janus Electrode for Both Oxygen and Hydrogen Evolution under Basic Conditions. , 2016, ACS applied materials & interfaces.

[18]  Yang‐Kook Sun,et al.  Nanostructured metal phosphide-based materials for electrochemical energy storage , 2016 .

[19]  L. Tjeng,et al.  Electronic structure of Cu2O and CuO. , 1988, Physical review. B, Condensed matter.

[20]  J. Niu,et al.  High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity , 2015, Nature Communications.

[21]  L. Monconduit,et al.  In Situ NMR Insights into the Electrochemical Reaction of Cu3P Electrodes in Lithium Batteries , 2016 .

[22]  Zijun Sun,et al.  Copper phosphide modified cadmium sulfide nanorods as a novel p–n heterojunction for highly efficient visible-light-driven hydrogen production in water , 2015 .

[23]  Xu Weilin,et al.  Self-assembled hairy ball-like Co3O4 nanostructures for lithium ion batteries , 2013 .

[24]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[25]  F. Favier,et al.  Electrochemical Reactivity of Cu3 P with Lithium , 2004 .

[26]  L. Manna,et al.  Size-tunable, hexagonal plate-like Cu3P and Janus-like Cu-Cu3P nanocrystals. , 2012, ACS nano.

[27]  Jing Ning,et al.  Reduced Graphene Oxide‐Mediated Growth of Uniform Tin‐Core/Carbon‐Sheath Coaxial Nanocables with Enhanced Lithium Ion Storage Properties , 2012, Advanced materials.

[28]  N. Pradhan,et al.  Semiconducting and plasmonic copper phosphide platelets. , 2013, Angewandte Chemie.

[29]  Zhenan Bao,et al.  Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles , 2013, Nature Communications.

[30]  Na Xu,et al.  Half‐Cell and Full‐Cell Applications of Highly Stable and Binder‐Free Sodium Ion Batteries Based on Cu3P Nanowire Anodes , 2016 .

[31]  M. Winter,et al.  Cu3P Binary Phosphide: Synthesis via a Wet Mechanochemical Method and Electrochemical Behavior as Negative Electrode Material for Lithium‐Ion Batteries , 2013 .

[32]  Yi Cui,et al.  The path towards sustainable energy. , 2016, Nature materials.

[33]  M. Wagner,et al.  XRD evidence for the electrochemical formation of Li+(PC)yCn- in PC-based electrolytes , 2005 .

[34]  Y. Hu,et al.  Multi-yolk-shell copper oxide@carbon octahedra as high-stability anodes for lithium-ion batteries , 2016 .

[35]  Huijuan Liu,et al.  Earth‐Rich Transition Metal Phosphide for Energy Conversion and Storage , 2016 .

[36]  Yunhui Huang,et al.  New Anode Framework for Rechargeable Lithium Batteries , 2011 .

[37]  S. Mitra,et al.  Thin copper phosphide films as conversion anode for lithium-ion battery applications , 2013 .

[38]  C. Villevieille,et al.  The good reactivity of lithium with nanostructured copper phosphide , 2008 .

[39]  Yury Gogotsi,et al.  Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. , 2014, ACS nano.

[40]  S. Mao,et al.  Controllable Synthesis of a Monophase Nickel Phosphide/Carbon (Ni5P4/C) Composite Electrode via Wet‐Chemistry and a Solid‐State Reaction for the Anode in Lithium Secondary Batteries , 2012 .

[41]  Lulu Zhang,et al.  A novel electrochemical activation effect induced morphology variation from massif-like CuxO to forest-like Cu2O nanostructure and the excellent electrochemical performance as anode for Li-ion battery , 2013 .

[42]  K. Stevenson,et al.  Low-temperature synthesis of amorphous FeP2 and its use as anodes for Li ion batteries. , 2012, Journal of the American Chemical Society.

[43]  O. Ersen,et al.  Metal-Dependent Interplay between Crystallization and Phosphorus Diffusion during the Synthesis of Metal Phosphide Nanoparticles , 2012 .

[44]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[45]  F. Favier,et al.  Air stable copper phosphide (Cu3P): a possible negative electrode material for lithium batteries , 2004 .

[46]  Xiaoqing Xu,et al.  Crystallinity, Surface Morphology, and Photoelectrochemical Effects in Conical InP and InN Nanowires Grown on Silicon. , 2016, ACS applied materials & interfaces.

[47]  L. Nazar,et al.  Facile Reversible Displacement Reaction of Cu3 P with Lithium at Low Potential , 2004 .