Traditional Control Schemes

In this chapter we are going to discuss several other methods of control. These methods include PID (proportional-plus-integral-plus derivative) control, self-tuning control, self-tuning PID control, generalized predictive control, and also fuzzy logic control. One of the earliest controllers that were used for control were the PI and PID controllers. PI and PID controllers have been proven to be remarkably effective in regulating a wide range of processes. The use of PI and PID controllers does not require an exact process model and hence, they are effective on industrial processes whose models are considerably difficult to derive. The PI and PID controllers are based on classical control theory and much easier to understand. Field engineers and process operators are able to relate the parameter settings and control system actions.

[1]  Björn Wittenmark,et al.  On Self Tuning Regulators , 1973 .

[2]  E. H. Mamdani,et al.  Advances in the linguistic synthesis of fuzzy controllers , 1976 .

[3]  K F Gill,et al.  A Design Study of a Self-Organizing Fuzzy Logic Controller , 1986 .

[4]  Ulf Borison,et al.  Self-tuning regulators for a class of multivariable systems , 1979, Autom..

[5]  R. M. Tong,et al.  A control engineering review of fuzzy systems , 1977, Autom..

[6]  D. Wilson,et al.  A new algorithm for optimal reduction of multivariable systems , 1980 .

[7]  D. Clarke,et al.  A generalized LQG approach to self-tuning control Part I. Aspects of design , 1985 .

[8]  J. Richalet,et al.  Model predictive heuristic control: Applications to industrial processes , 1978, Autom..

[9]  Petar V. Kokotovic,et al.  Singular perturbations and order reduction in control theory - An overview , 1975, at - Automatisierungstechnik.

[10]  E. H. Mamdani,et al.  Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis , 1976, IEEE Transactions on Computers.

[11]  L. Keviczky,et al.  Direct Methods for Self-Tuning PID Regulators , 1982 .

[12]  Yau-Hwang Kuo,et al.  A fuzzy neural network model and its hardware implementation , 1993, IEEE Trans. Fuzzy Syst..

[13]  P. Gawthrop Self-tuning PID controllers: Algorithms and implementation , 1986 .

[14]  Robert R. Bitmead,et al.  Adaptive optimal control , 1990 .

[15]  Sa Chesna,et al.  Extended Horizon Adaptive Control , 1984 .

[16]  Bart Kosko,et al.  Adaptive fuzzy systems for backing up a truck-and-trailer , 1992, IEEE Trans. Neural Networks.

[17]  Rolf Isermann,et al.  A parameter-adaptive PID-controller with stepwise parameter optimization , 1984, at - Automatisierungstechnik.

[18]  Ebrahim Mamdani,et al.  Applications of fuzzy algorithms for control of a simple dynamic plant , 1974 .

[19]  P.J. King,et al.  The application of fuzzy control systems to industrial processes , 1977, Autom..

[20]  Dale E. Seborg,et al.  A SELF-TUNING CONTROLLER WITH A PID STRUCTURE , 1983 .

[21]  G. Bierman Factorization methods for discrete sequential estimation , 1977 .

[22]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[23]  Masaki Togai,et al.  Expert System on a Chip: An Engine for Real-Time Approximate Reasoning , 1986, IEEE Expert.

[24]  Robin De Keyser,et al.  A comparative study of self-adaptive long-range predictive control methods , 1985, Autom..

[25]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[26]  C. Mohtadi,et al.  Properties of generalized predictive control , 1987, Autom..

[27]  Tore Hägglund,et al.  Automatic tuning of simple regulators with specifications on phase and amplitude margins , 1984, Autom..

[28]  Norbert Wiener,et al.  Cybernetics: Control and Communication in the Animal and the Machine. , 1949 .

[29]  David W. Clarke,et al.  Generalized predictive control - Part I. The basic algorithm , 1987, Autom..

[30]  D. W. Clarke,et al.  Offset problem and k-incremental predictors in self-tuning control , 1983 .

[31]  David W. Clarke,et al.  Self-tuning control of nonminimum-phase systems , 1984, Autom..

[32]  B. Porter,et al.  Design of adaptive digital set-point tracking PID controllers incorporating recursive step-response matrix identifiers for multivariable plants , 1987 .

[33]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[34]  Peter J. Gawthrop,et al.  Self-tuning PI control of a pH neutralisation process , 1983 .

[35]  D. W. Clarke,et al.  Introduction to self-tuning controllers , 1985 .

[36]  Bart Kosko,et al.  Neural networks and fuzzy systems: a dynamical systems approach to machine intelligence , 1991 .

[37]  R. Kelly,et al.  PID Self-Tuners: Some Theoretical and Practical Aspects , 1984, IEEE Transactions on Industrial Electronics.

[38]  Y. TAKAHASHI,et al.  Parametereinstellung bei linearen DDC-Algorithmen , 1971 .

[39]  David Clarke,et al.  Self-tuning control , 1979 .

[40]  David W. Clarke,et al.  Generalized Predictive Control - Part II Extensions and interpretations , 1987, Autom..

[41]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[42]  Václav Peterka,et al.  Predictor-based self-tuning control , 1982, Autom..

[43]  Maciejowsk Multivariable Feedback Design , 1989 .

[44]  Peter J. Gawthrop,et al.  EXPLICIT PID SELF TUNING CONTROL FOR SYSTEMS WITH UNKNOWN TIME DELAY , 1991 .

[45]  Yoshikazu Nishikawa,et al.  A method for auto-tuning of PID control parameters , 1981, Autom..

[46]  M. F. Abbod,et al.  Self-organising fuzzy logic control and the selection of its scaling factors , 1992 .

[47]  Ebrahim H. Mamdani,et al.  A linguistic self-organizing process controller , 1979, Autom..

[48]  Andrew Whinston,et al.  Fuzzy Sets and Social Choice , 1973 .

[49]  P. Gawthrop Some interpretations of the self-tuning controller , 1977 .

[50]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[51]  Lennart Ljung,et al.  Theory and applications of self-tuning regulators , 1977, Autom..