Chitosan/Ionic Liquid Composite Electrode for Electrochemical Monitoring of the Surface-Confined Interaction Between Mitomycin C and DNA

In the present study a chitosan/ionic liquid modified pencil graphite electrode (CHIT-IL-PGEs) was developed for the first time for enhanced electrochemical monitoring of nucleic acid, and the interaction of the anticancer drug Mitomycin C (MC) and calf thymus double stranded DNA (dsDNA) by measuring the oxidation signals of MC and guanine in the same voltammetric scale. Differential pulse voltammetry, cyclic voltammetry and electrochemical impedance spectroscopy techniques were used to evaluate the performance of the CHIT-IL based biosensor on electrochemical monitoring of DNA, and drug-DNA interaction. The experimental parameters, IL, dsDNA and MC concentration and the interaction time were then optimized.

[1]  A. Voulgaropoulos,et al.  Study of interactions between actinomycin D and DNA on carbon paste electrode (CPE) and on the hanging mercury drop (HMDE) surface. , 2003, Journal of pharmaceutical and biomedical analysis.

[2]  M. Ondrechen,et al.  The Intrinsic Anodic Stability of Several Anions Comprising Solvent‐Free Ionic Liquids , 1996 .

[3]  G. Rivas,et al.  Accumulation and trace measurements of phenothiazine drugs at DNA-modified electrodes , 1996 .

[4]  K. Seddon,et al.  Influence of chloride, water, and organic solvents on the physical properties of ionic liquids , 2000 .

[5]  M. Tomasz,et al.  Reactivity of mitomycin C with synthetic polyribonucleotides containing guanine or guanine analogs. , 1982, Biochimica et biophysica acta.

[6]  Joan Fuller,et al.  The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate : Electrochemical couples and physical properties , 1997 .

[7]  Wei Sun,et al.  Electrochemical behaviors of guanosine on carbon ionic liquid electrode and its determination. , 2009, Talanta.

[8]  Yang Liu,et al.  An ionic liquid-type carbon paste electrode and its polyoxometalate-modified properties , 2005 .

[9]  A. M. Brett,et al.  Voltammetric behaviour of mitoxantrone at a DNA-biosensor. , 1998, Biosensors & bioelectronics.

[10]  Sandra Einloft,et al.  Enlarged electrochemical window in dialkyl-imidazolium cation based room-temperature air and water-stable molten salts , 1997 .

[11]  G. Rivas,et al.  DNA-Modified Electrode for the Detection of Aromatic Amines , 1996 .

[12]  Jian-hui Jiang,et al.  Voltammetric studies of the interaction of daunomycin anticancer drug with DNA and analytical applications , 1998 .

[13]  H. M. Geller,et al.  Oxidative stress mediates neuronal DNA damage and apoptosis in response to cytosine arabinoside , 2001, Journal of neurochemistry.

[14]  F. Hoppe-Seyler Ueber Chitin und Cellulose , 1894 .

[15]  A. Erdem,et al.  Single‐Walled Carbon Nanotubes Modified Graphite Electrodes for Electrochemical Monitoring of Nucleic Acids and Biomolecular Interactions , 2009 .

[16]  E. Paleček,et al.  Interactions of surface-confined DNA with acid-activated mitomycin C. , 1998, Biophysical chemistry.

[17]  Robin D. Rogers,et al.  Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate , 2003 .

[18]  E. Paleček,et al.  Echinomycin and cobalt-phenanthroline as redox indicators of DNA hybridization at gold electrodes. , 2006, Frontiers in bioscience : a journal and virtual library.

[19]  A. Erdem,et al.  Nanomaterial-based electrochemical DNA sensing strategies. , 2007, Talanta.

[20]  A. Erdem,et al.  Characterization of poly(vinylferrocenium) coated surfaces and their applications in DNA sensor technology , 2010 .

[21]  L. Hurley,et al.  Anthramycin binding to deoxyribonucleic acid-mitomycin C complexes. Evidence for drug-induced deoxyribonucleic acid conformational change and cooperativity in mitomycin C binding. , 1981, Biochemistry.

[22]  M. Zhang,et al.  Electrochemical investigation on interaction between DNA with quercetin and Eu-Qu3 complex. , 2004, Journal of inorganic biochemistry.

[23]  M. Tomasz,et al.  Electrostatic complexes of mitomycin C with nucleic acids and polyanions. , 1978, Biochimica et biophysica acta.

[24]  E. Voest,et al.  Doxorubicin and mechanical performance of cardiac trabeculae after acute and chronic treatment: a review. , 2001, European journal of pharmacology.

[25]  E. Paleček,et al.  Voltammetric determination of mitomycin C in the presence of other anti-cancer drugs and in urine , 1998 .

[26]  A. Erdem,et al.  Interaction of the anticancer drug epirubicin with DNA , 2001 .

[27]  A. Bard,et al.  Novel Electrochemical Studies of Ionic Liquids , 2002 .

[28]  M. Mascini,et al.  Electrochemical genosensor for mitomycin C-DNA interaction based on guanine signal. , 2004, Journal of pharmaceutical and biomedical analysis.

[29]  E. Paleček,et al.  Cyclic voltammetry of echinomycin and its interaction with double-stranded and single-stranded DNA adsorbed at the electrode. , 2002, Bioelectrochemistry.

[30]  Gulsah Congur,et al.  Electrochemical monitoring of indicator-free DNA hybridization by carbon nanotubes-chitosan modified disposable graphite sensors. , 2012, Colloids and surfaces. B, Biointerfaces.

[31]  J Wang,et al.  Electrochemical biosensors for DNA hybridization and DNA damage. , 1998, Biosensors & bioelectronics.

[32]  E. Paleček,et al.  Electrochemistry of nucleic acids. , 2012, Chemical reviews.

[33]  J. Anacona,et al.  Metal complexes of the flavonoid quercetin: antibacterial properties , 2001 .

[34]  T. Peng,et al.  Investigation on the interaction of DNA and electroactive ligands using a rapid electrochemical method. , 2003, Journal of biochemical and biophysical methods.

[35]  T. Myers,et al.  Cytotoxic activities of Mannich bases of chalcones and related compounds. , 1998, Journal of medicinal chemistry.

[36]  J. Quail,et al.  Mannich bases of phenolic azobenzenes possessing cytotoxic activity , 1997 .

[37]  Qin Xu,et al.  Sensitive impedimetric DNA biosensor with poly(amidoamine) dendrimer covalently attached onto carbon nanotube electronic transducers as the tether for surface confinement of probe DNA. , 2010, Biosensors & bioelectronics.

[38]  A. Ivaska,et al.  Applications of ionic liquids in electrochemical sensors. , 2008, Analytica chimica acta.

[39]  Shaoyu Zhou,et al.  Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. , 2001, Cancer research.

[40]  K. Nakanishi,et al.  Isolation and structure of an intrastrand cross-link adduct of mitomycin C and DNA. , 1992, Biochemistry.

[41]  Elizabeth M. Boon,et al.  Single-base mismatch detection based on charge transduction through DNA. , 1999, Nucleic acids research.

[42]  L. Zaijun,et al.  Synergistic contributions of fullerene, ferrocene, chitosan and ionic liquid towards improved performance for a glucose sensor. , 2010, Biosensors & bioelectronics.

[43]  Mengsu Yang,et al.  Electrochemical properties of DNA-intercalating doxorubicin and methylene blue on n-hexadecyl mercaptan-doped 5'-thiol-labeled DNA-modified gold electrodes. , 2003, Biosensors & bioelectronics.

[44]  Bengi Uslu,et al.  Voltammetric studies on the HIV-1 inhibitory drug Efavirenz: the interaction between dsDNA and drug using electrochemical DNA biosensor and adsorptive stripping voltammetric determination on disposable pencil graphite electrode. , 2009, Biosensors & bioelectronics.

[45]  J. Gooding,et al.  Electrochemical approach of anticancer drugs--DNA interaction. , 2005, Journal of pharmaceutical and biomedical analysis.

[46]  X. Cai,et al.  DNA biosensor for the detection of hydrazines. , 1996, Analytical chemistry.

[47]  C. Teijeiro,et al.  Study on the Adsorption Properties of the Drug Mitomycin C by Stripping Voltammetry , 2002 .

[48]  A. Erdem,et al.  Graphene oxide integrated sensor for electrochemical monitoring of mitomycin C-DNA interaction. , 2012, The Analyst.