Efficient Solution of Ordinary Differential Equations with High-Dimensional Parametrized Uncertainty

The important task of evaluating the impact of random parameters on the output of stochastic ordinary differential equations (SODE) can be computationally very demanding, in particular for problems with a high-dimensional parameter space. In this work we consider this problem in some detail and demonstrate that by combining several techniques one can dramatically reduce the overall cost without impacting the predictive accuracy of the output of interests. We discuss how the combination of ANOVA expansions, different sparse grid techniques, and the total sensitivity index (TSI) as a pre-selective mechanism enables the modeling of problems with hundred of parameters. We demonstrate the accuracy and efficiency of this approach on a number of challenging test cases drawn from engineering and science.

[1]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[2]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[3]  Yuedong Wang Smoothing Spline ANOVA , 2011 .

[4]  Alan Genz,et al.  A Package for Testing Multiple Integration Subroutines , 1987 .

[5]  M. Stein Large sample properties of simulations using latin hypercube sampling , 1987 .

[6]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[7]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[8]  Menner A. Tatang,et al.  An efficient method for parametric uncertainty analysis of numerical geophysical models , 1997 .

[9]  A. Owen THE DIMENSION DISTRIBUTION AND QUADRATURE TEST FUNCTIONS , 2003 .

[10]  A. Stroud Remarks on the disposition of points in numerical integration formulas. , 1957 .

[11]  Jan G. Verwer,et al.  Gauss-Seidel Iteration for Stiff ODES from Chemical Kinetics , 1994, SIAM J. Sci. Comput..

[12]  Henryk Wozniakowski,et al.  Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems , 1995, J. Complex..

[13]  D. Hunter Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 2000 .

[14]  D. Xiu Efficient collocational approach for parametric uncertainty analysis , 2007 .

[15]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[16]  A. Saltelli,et al.  Importance measures in global sensitivity analysis of nonlinear models , 1996 .

[17]  C. W. Clenshaw,et al.  A method for numerical integration on an automatic computer , 1960 .

[18]  W. Gilks Markov Chain Monte Carlo , 2005 .

[19]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[20]  B. Fox Strategies for Quasi-Monte Carlo , 1999, International Series in Operations Research & Management Science.

[21]  D. Xiu Fast numerical methods for stochastic computations: A review , 2009 .

[22]  Yanzhao Cao,et al.  International Journal of C 2009 Institute for Scientific Numerical Analysis and Modeling Computing and Information Anova Expansions and Efficient Sampling Methods for Parameter Dependent Nonlinear Pdes , 2022 .

[23]  Chong Gu Smoothing Spline Anova Models , 2002 .

[24]  Alan Genz,et al.  Testing multidimensional integration routines , 1984 .

[25]  Kai-Tai Fang,et al.  The effective dimension and quasi-Monte Carlo integration , 2003, J. Complex..

[26]  Joseph A. C. Delaney Sensitivity analysis , 2018, The African Continental Free Trade Area: Economic and Distributional Effects.

[27]  J. Hesthaven,et al.  Adaptive sparse grid algorithms with applications to electromagnetic scattering under uncertainty , 2011 .

[28]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[29]  Francesca Mazzia,et al.  Test Set for Initial Value Problem Solvers , 2003 .

[30]  Lloyd N. Trefethen,et al.  Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..

[31]  D. Xiu Numerical integration formulas of degree two , 2008 .

[32]  Joseph F. Traub,et al.  Faster Valuation of Financial Derivatives , 1995 .

[33]  S. E. Ahmed,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 2008, Technometrics.