Unidirectional gas flow in soil porosity resulting from barometric pressure cycles.

During numerical simulation of air flow in the vadose zone, it was noticed that a small sinusoidal pressure would cause a gradual one-way migration of the pore gas. This was found to be a physical phenomenon, not a numerical artifact of the finite element simulation. The one-way migration occurs because the atmospheric pressure, and hence the air density, is slightly greater when air is flowing into the ground than when air is flowing out of the ground. A simple analytic theory of the phenomenon is presented, together with analytic calculations using actual barometric pressure data. In soil of one Darcy permeability, the one-way migration is of the order of a few tenths of a meter per year for either plane flow from ground surface or for radial flow from an open borehole. The migration is sufficiently small that it will have no practical consequences in most circumstances; however, investigators who conduct detailed numerical modeling should recognize that this phenomenon is not a numerical artifact in an apparently linear system.