Multi-Miner: Object-Adaptive Region Mining for Weakly-Supervised Semantic Segmentation

Object region mining is a critical step for weakly-supervised semantic segmentation. Most recent methods mine the object regions by expanding the seed regions localized by class activation maps. They generally do not consider the sizes of objects and apply a monotonous procedure to mining all the object regions. Thus their mined regions are often insufficient in number and scale for large objects, and on the other hand easily contaminated by surrounding backgrounds for small objects. In this paper, we propose a novel multi-miner framework to perform a region mining process that adapts to diverse object sizes and is thus able to mine more integral and finer object regions. Specifically, our multi-miner leverages a parallel modulator to check whether there are remaining object regions for each single object, and guide a category-aware generator to mine the regions of each object independently. In this way, the multi-miner adaptively takes more steps for large objects and fewer steps for small objects. Experiment results demonstrate that the multi-miner offers better region mining results and helps achieve better segmentation performance than state-of-the-art weakly-supervised semantic segmentation methods.

[1]  Dahun Kim,et al.  Two-Phase Learning for Weakly Supervised Object Localization , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[2]  George Papandreou,et al.  Weakly-and Semi-Supervised Learning of a Deep Convolutional Network for Semantic Image Segmentation , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[3]  Christoph H. Lampert,et al.  Seed, Expand and Constrain: Three Principles for Weakly-Supervised Image Segmentation , 2016, ECCV.

[4]  Sungroh Yoon,et al.  FickleNet: Weakly and Semi-Supervised Semantic Image Segmentation Using Stochastic Inference , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Philip H. S. Torr,et al.  Discovering Class-Specific Pixels for Weakly-Supervised Semantic Segmentation , 2017, BMVC.

[7]  Subhransu Maji,et al.  Semantic contours from inverse detectors , 2011, 2011 International Conference on Computer Vision.

[8]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[9]  Ronan Collobert,et al.  From image-level to pixel-level labeling with Convolutional Networks , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Iasonas Kokkinos,et al.  DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Vladlen Koltun,et al.  Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials , 2011, NIPS.

[12]  Wataru Shimoda,et al.  Distinct Class-Specific Saliency Maps for Weakly Supervised Semantic Segmentation , 2016, ECCV.

[13]  Huimin Ma,et al.  Weakly-Supervised Semantic Segmentation by Iteratively Mining Common Object Features , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[14]  Iasonas Kokkinos,et al.  Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs , 2014, ICLR.

[15]  Jian Sun,et al.  BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[16]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[17]  Bolei Zhou,et al.  Learning Deep Features for Discriminative Localization , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Tomás Lozano-Pérez,et al.  A Framework for Multiple-Instance Learning , 1997, NIPS.

[19]  Yun Fu,et al.  Tell Me Where to Look: Guided Attention Inference Network , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[20]  Yunchao Wei,et al.  Revisiting Dilated Convolution: A Simple Approach for Weakly- and Semi-Supervised Semantic Segmentation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[21]  Yunchao Wei,et al.  Self-Erasing Network for Integral Object Attention , 2018, NeurIPS.

[22]  Jian Sun,et al.  ScribbleSup: Scribble-Supervised Convolutional Networks for Semantic Segmentation , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Matthieu Cord,et al.  WILDCAT: Weakly Supervised Learning of Deep ConvNets for Image Classification, Pointwise Localization and Segmentation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Yao Zhao,et al.  Object Region Mining with Adversarial Erasing: A Simple Classification to Semantic Segmentation Approach , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Suha Kwak,et al.  Learning Pixel-Level Semantic Affinity with Image-Level Supervision for Weakly Supervised Semantic Segmentation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[26]  Huchuan Lu,et al.  Joint Learning of Saliency Detection and Weakly Supervised Semantic Segmentation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[27]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[28]  Trevor Darrell,et al.  Constrained Convolutional Neural Networks for Weakly Supervised Segmentation , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[29]  Seong Joon Oh,et al.  Exploiting Saliency for Object Segmentation from Image Level Labels , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Abhishek Das,et al.  Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[31]  Luc Van Gool,et al.  The Pascal Visual Object Classes Challenge: A Retrospective , 2014, International Journal of Computer Vision.

[32]  Wenyu Liu,et al.  Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.