Coxeter Groups and Abstract Elementary Classes: The Right-Angled Case

We study classes of right-angled Coxeter groups with respect to the strong submodel relation of parabolic subgroup. We show that the class of all right-angled Coxeter group is not smooth, and establish some general combinatorial criteria for such classes to be abstract elementary classes, for them to be finitary, and for them to be tame. We further prove two combinatorial conditions ensuring the strong rigidity of a right-angled Coxeter group of arbitrary rank. The combination of these results translate into a machinery to build concrete examples of $\mathrm{AECs}$ satisfying given model-theoretic properties. We exhibit the power of our method constructing three concrete examples of finitary classes. We show that the first and third class are non-homogeneous, and that the last two are tame, uncountably categorical and axiomatizable by a single $L_{\omega_{1}, \omega}$-sentence. We also observe that the isomorphism relation of any countable complete first-order theory is $\kappa$-Borel reducible (in the sense of generalized descriptive set theory) to the isomorphism relation of the theory of right-angled Coxeter groups whose Coxeter graph is an infinite random graph.

[1]  Gianluca Paolini,et al.  Beyond abstract elementary classes: On the model theory of geometric lattices , 2015, Ann. Pure Appl. Log..

[2]  Ehud Hrushovski,et al.  Extending partial isomorphisms of graphs , 1992, Comb..

[3]  S. R. Gal On Normal Subgroups of Coxeter Groups Generated by Standard Parabolic Subgroups , 2005 .

[4]  N. Bourbaki,et al.  Lie Groups and Lie Algebras: Chapters 1-3 , 1989 .

[5]  Jacques Tits,et al.  Le problème des mots dans les groupes de Coxeter , 1969 .

[6]  Anatole Castella Sur les automorphismes et la rigidite des groupes de Coxeter a angles droits , 2006 .

[7]  AARON MEYERS,et al.  RIGIDITY OF RIGHT-ANGLED COXETER GROUPS , 2010 .

[8]  David G. Radcliffe,et al.  Rigidity of Right-Angled Coxeter Groups , 1999, math/9901049.

[9]  A. Björner,et al.  Combinatorics of Coxeter Groups , 2005 .

[10]  Jacques Tits,et al.  Sur le groupe des automorphismes de certains groupes de Coxeter , 1988 .

[11]  Bernhard Mühlherr,et al.  Automorphisms of Graph-Universal Coxeter Groups☆ , 1998 .

[12]  Sy-David Friedman,et al.  Generalized Descriptive Set Theory and Classification Theory , 2012, 1207.4311.

[13]  Donald A. Barkauskas Centralizers in graph products of groups , 2007 .

[14]  Patrick Bahls,et al.  The Isomorphism Problem in Coxeter Groups , 2005 .

[15]  Saharon Shelah,et al.  Classification Theory for Abstract Elementary Classes , 2009 .

[16]  Herman Servatius,et al.  Automorphisms of graph groups , 1989 .

[17]  H. Crapo Single-element extensions of matroids , 1965 .

[18]  Saharon Shelah,et al.  Non-forking frames in abstract elementary classes , 2013, Ann. Pure Appl. Log..

[19]  David W. Kueker Abstract elementary classes and infinitary logics , 2008, Ann. Pure Appl. Log..

[20]  Tapani Hyttinen,et al.  Categoricity transfer in simple finitary abstract elementary classes , 2011, J. Symb. Log..

[21]  Bernhard Mühlherr,et al.  Rigidity of Coxeter Groups and Artin Groups , 2002 .