Gender recognition from face images with local WLD descriptor

In various biometric applications, gender recognition from facial images plays an important role. In this paper, we investigate Weber's Local Descriptor (WLD) for gender recognition. WLD is a texture descriptor that performs better than other similar descriptors but it is holistic due to its very construction. We extend it by introducing local spatial information; divide an image into a number of blocks, calculate WLD descriptor for each block and concatenate them. This spatial WLD descriptor has better discriminatory power. Spatial WLD descriptor has three parameters. Through a large number of experiments performed on FERET database, we report the best combination of these parameters and that our proposed spatial WLD descriptor with simplest classifier gives much better accuracy i.e. 99.08% with lesser algorithmic complexity than state-of-the-art gender recognition approaches.

[1]  Hyeonjoon Moon,et al.  The FERET Evaluation Methodology for Face-Recognition Algorithms , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Ming Li,et al.  An Experimental Study on Automatic Face Gender Classification , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[3]  Matti Pietikäinen,et al.  IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, TPAMI-2008-09-0620 1 WLD: A Robust Local Image Descriptor , 2022 .

[4]  Sushil J. Louis,et al.  Genetic feature subset selection for gender classification: a comparison study , 2002, Sixth IEEE Workshop on Applications of Computer Vision, 2002. (WACV 2002). Proceedings..

[5]  Ji Zheng,et al.  A support vector machine classifier with automatic confidence and its application to gender classification , 2011, Neurocomputing.

[6]  Terrence J. Sejnowski,et al.  SEXNET: A Neural Network Identifies Sex From Human Faces , 1990, NIPS.

[7]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Shumeet Baluja,et al.  Boosting Sex Identification Performance , 2005, International Journal of Computer Vision.

[9]  Stan Z. Li,et al.  Advances in Biometrics, International Conference, ICB 2007, Seoul, Korea, August 27-29, 2007, Proceedings , 2007, ICB.

[10]  Luís A. Alexandre Gender recognition: A multiscale decision fusion approach , 2010, Pattern Recognit. Lett..

[11]  Anil K. Jain,et al.  Multimodal Facial Gender and Ethnicity Identification , 2006, ICB.

[12]  Hyun-Chul Kim,et al.  Appearance-based gender classification with Gaussian processes , 2006, Pattern Recognit. Lett..

[13]  Ming-Hsuan Yang,et al.  Gender classification with support vector machines , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[14]  Dominique Valentin,et al.  Sex classification of face areas: How well can a linear neural network predict human performance? , 1998 .

[15]  Pengfei Shi,et al.  Fusion of multiple facial regions for expression-invariant gender classification , 2009, IEICE Electron. Express.

[16]  Harry Wechsler,et al.  Gender and ethnic classification of face images , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[17]  Minoru Fukumi,et al.  Marketing data collection from face images using neural networks , 2005 .