Distance Labeling Schemes for Cube-Free Median Graphs

Distance labeling schemes are schemes that label the vertices of a graph with short labels in such a way that the distance between any two vertices $u$ and $v$ can be determined efficiently by merely inspecting the labels of $u$ and $v$, without using any other information. Similarly, routing labeling schemes label the vertices of a graph in a such a way that given the labels of a source node and a destination node, it is possible to compute efficiently the port number of the edge from the source that heads in the direction of the destination. One of important problems is finding natural classes of graphs admitting distance and/or routing labeling schemes with labels of polylogarithmic size. In this paper, we show that the class of cube-free median graphs on $n$ nodes enjoys distance and routing labeling schemes with labels of $O(\log^3 n)$ bits.

[1]  Ran Raz,et al.  Distance labeling in graphs , 2001, SODA '01.

[2]  Donald E. Knuth Introduction to combinatorial algorithms and boolean functions , 2008 .

[3]  David Peleg Informative Labeling Schemes for Graphs , 2000, MFCS.

[4]  Moni Naor,et al.  Implicit Representation of Graphs , 1992, SIAM J. Discret. Math..

[5]  Victor Chepoi,et al.  Graphs of Some CAT(0) Complexes , 2000, Adv. Appl. Math..

[6]  J. Scott Provan,et al.  A Fast Algorithm for Computing Geodesic Distances in Tree Space , 2009, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[7]  David Eppstein,et al.  Ramified Rectilinear Polygons: Coordinatization by Dendrons , 2010, Discret. Comput. Geom..

[8]  Sandi Klavzar,et al.  On cube-free median graphs , 2007, Discret. Math..

[9]  V. Chepoi,et al.  Weakly Modular Graphs and Nonpositive Curvature , 2014, Memoirs of the American Mathematical Society.

[10]  Koyo Hayashi,et al.  A Polynomial Time Algorithm to Compute Geodesics in CAT(0) Cubical Complexes , 2017, Discrete & Computational Geometry.

[11]  Stephen Alstrup,et al.  Simpler, faster and shorter labels for distances in graphs , 2015, SODA.

[12]  A. O. Houcine On hyperbolic groups , 2006 .

[13]  Victor Chepoi,et al.  On embeddings of CAT(0) cube complexes into products of trees via colouring their hyperplanes , 2011, J. Comb. Theory B.

[14]  Glynn Winskel,et al.  Models for Concurrency , 1994 .

[15]  Feodor F. Dragan,et al.  Distance and routing labeling schemes for non-positively curved plane graphs , 2006, J. Algorithms.

[16]  Cyril Gavoille,et al.  Optimal Distance Labeling for Interval Graphs and Related Graph Families , 2008, SIAM J. Discret. Math..

[17]  D. Peleg Proximity-preserving labeling schemes , 2000, J. Graph Theory.

[18]  Martin Roller Poc Sets, Median Algebras and Group Actions , 2016 .

[19]  Victor Chepoi,et al.  A Counterexample to Thiagarajan's Conjecture on Regular Event Structures , 2017, ICALP.

[20]  Michah Sageev,et al.  CAT(0) cube complexes and groups , 2014 .

[21]  H. Bandelt,et al.  Metric graph theory and geometry: a survey , 2006 .

[22]  Robert Ghrist,et al.  State Complexes for Metamorphic Robots , 2004, Int. J. Robotics Res..

[23]  Cyril Gavoille,et al.  Distance labeling scheme and split decomposition , 2003, Discret. Math..

[24]  Pawel Gawrychowski,et al.  A note on distance labeling in planar graphs , 2016, ArXiv.

[25]  Cyril Gavoille,et al.  Localized and Compact Data-Structure for Comparability Graphs , 2005, ISAAC.

[26]  Inge Li Gørtz,et al.  Distance Labeling Schemes for Trees , 2015, ICALP.

[27]  Victor Chepoi,et al.  Distance and Routing Labeling Schemes for Cube-Free Median Graphs , 2018, Algorithmica.

[28]  H. M. Mulder The interval function of a graph , 1980 .

[29]  Bruno Courcelle,et al.  Query efficient implementation of graphs of bounded clique-width , 2003, Discret. Appl. Math..

[30]  Pawel Gawrychowski,et al.  Optimal Distance Labeling Schemes for Trees , 2016, PODC.

[31]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[32]  Robert Ghrist,et al.  The geometry and topology of reconfiguration , 2007, Adv. Appl. Math..

[33]  Louis J. Billera,et al.  Geometry of the Space of Phylogenetic Trees , 2001, Adv. Appl. Math..

[34]  Alexander Schrijver,et al.  Median graphs and Helly hypergraphs , 1979, Discret. Math..

[35]  Victor Chepoi,et al.  On density of subgraphs of Cartesian products , 2017, J. Graph Theory.

[36]  Melvin A. Breuer,et al.  An unexpected result in coding the vertices of a graph , 1967 .