In vitro responsiveness of human-drug-resistant tissue to antiepileptic drugs: Insights into the mechanisms of pharmacoresistance

[1]  M. Brodie,et al.  Lack of Association between the C3435T Polymorphism in the Human Multidrug Resistance (MDR1) Gene and Response to Antiepileptic Drug Treatment , 2005, Epilepsia.

[2]  P. Kwan,et al.  Potential Role of Drug Transporters in the Pathogenesis of Medically Intractable Epilepsy , 2005, Epilepsia.

[3]  H. Urbach,et al.  Imaging of the epilepsies , 2005, European Radiology.

[4]  A. Vezzani,et al.  Significance of MDR1 and multiple drug resistance in refractory human epileptic brain , 2004 .

[5]  I. Scheffer,et al.  Failure to confirm association of a polymorphism in ABCB1 with multidrug-resistant epilepsy , 2004, Neurology.

[6]  J. C. Baayen,et al.  Expression and Cellular Distribution of Multidrug Resistance–related Proteins in the Hippocampus of Patients with Mesial Temporal Lobe Epilepsy , 2004, Epilepsia.

[7]  H. Winn Youmans Neurological Surgery , 2003 .

[8]  H. White Preclinical Development of Antiepileptic Drugs: Past, Present, and Future Directions , 2003, Epilepsia.

[9]  W. Löscher,et al.  Multidrug Resistance Protein MRP2 Contributes to Blood-Brain Barrier Function and Restricts Antiepileptic Drug Activity , 2003, Journal of Pharmacology and Experimental Therapeutics.

[10]  E. Aronica,et al.  Expression and cellular distribution of multidrug transporter proteins in two major causes of medically intractable epilepsy: focal cortical dysplasia and glioneuronal tumors , 2003, Neuroscience.

[11]  D. Janigro,et al.  Vascular and parenchymal mechanisms in multiple drug resistance: a lesson from human epilepsy. , 2003, Current drug targets.

[12]  D. Goldstein,et al.  Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1. , 2003, The New England journal of medicine.

[13]  H. Stefan,et al.  A Kindling Model of Pharmacoresistant Temporal Lobe Epilepsy in Sprague–Dawley Rats Induced by Coriaria Lactone and Its Possible Mechanism , 2003, Epilepsia.

[14]  Christian E Elger,et al.  A novel mechanism underlying drug resistance in chronic epilepsy , 2003, Annals of neurology.

[15]  D. Binder Mechanisms of drug resistance in epilepsy: lessons from oncology. London, United Kingdom, 13-15 March 2001. Symposium proceedings. , 2002, Novartis Foundation symposium.

[16]  W. Löscher,et al.  P-Glycoprotein-mediated efflux of phenobarbital, lamotrigine, and felbamate at the blood–brain barrier: evidence from microdialysis experiments in rats , 2002, Neuroscience Letters.

[17]  E. Aronica,et al.  Limbic Seizures Induce P-Glycoprotein in Rodent Brain: Functional Implications for Pharmacoresistance , 2002, The Journal of Neuroscience.

[18]  Wolfgang Löscher,et al.  Role of multidrug transporters in pharmacoresistance to antiepileptic drugs. , 2002, The Journal of pharmacology and experimental therapeutics.

[19]  W. Löscher Current status and future directions in the pharmacotherapy of epilepsy. , 2002, Trends in pharmacological sciences.

[20]  H. Beck,et al.  Effect of phenytoin on sodium and calcium currents in hippocampal CA1 neurons of phenytoin-resistant kindled rats , 2002, Neuropharmacology.

[21]  M. Mayberg,et al.  Overexpression of Multiple Drug Resistance Genes in Endothelial Cells from Patients with Refractory Epilepsy , 2001, Epilepsia.

[22]  I. Najm,et al.  Mechanisms of Epileptogenesis , 2001, Springer US.

[23]  M. Thom,et al.  Multidrug-resistance protein 1 in focal cortical dysplasia , 2001, The Lancet.

[24]  D. Janigro Blood–brain barrier, ion homeostasis and epilepsy: possible implications towards the understanding of ketogenic diet mechanisms , 1999, Epilepsy Research.

[25]  S. Sisodiya,et al.  Over-expression of P-glycoprotein in malformations of cortical development. , 1999, Neuroreport.

[26]  M S Grady,et al.  Impaired K+ Homeostasis and Altered Electrophysiological Properties of Post-Traumatic Hippocampal Glia , 1999, The Journal of Neuroscience.

[27]  P. Schwartzkroin,et al.  Osmolarity, ionic flux, and changes in brain excitability , 1998, Epilepsy Research.

[28]  B. Swartz,et al.  Dynamic [18F]fluorodeoxyglucose positron emission tomography and hypometabolic zones in seizures: Reduced capillary influx , 1998, Annals of neurology.

[29]  A. Delgado-Escueta,et al.  Interictal Seizure Resections Show Two Configurations of Endothelial Glut1 Glucose Transporter in the Human Blood–Brain Barrier , 1998, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[30]  N.F. de Rooij,et al.  Microelectrode arrays for electrophysiological monitoring of hippocampal organotypic slice cultures , 1997, IEEE Transactions on Biomedical Engineering.

[31]  L. Stoppini,et al.  A new extracellular multirecording system for electrophysiological studies: application to hippocampal organotypic cultures , 1997, Journal of Neuroscience Methods.

[32]  R. Köhling,et al.  A portable chamber for long-distance transport of surviving human brain slice preparations , 1996, Journal of Neuroscience Methods.

[33]  R. Köhling,et al.  Changes of extracellular calcium concentration induced by application of excitatory amino acids in the human neocortex in vitro , 1995, Brain Research.

[34]  U. Heinemann,et al.  Paroxysmal epileptiform discharges in temporal lobe slices after prolonged exposure to low magnesium are resistant to clinically used anticonvulsants , 1995, Epilepsy Research.

[35]  C. McBain,et al.  Hippocampal inhibitory neuron activity in the elevated potassium model of epilepsy. , 1994, Journal of neurophysiology.

[36]  G Biella,et al.  Multifocal spontaneous epileptic activity induced by restricted bicuculline ejection in the piriform cortex of the isolated guinea pig brain. , 1994, Journal of neurophysiology.

[37]  P. Schwartzkroin,et al.  Effects of GABA on CA3 pyramidal cell dendrites in rabbit hippocampal slices , 1988, Brain Research.

[38]  J. Talairach,et al.  33. Brain Levels of Antiepileptic Drugs in Man , 1980 .

[39]  E. Hvidberg,et al.  Brain concentrations of carbamazepine and carbamazepine-10,11-epoxide in epileptic patients , 1978, European Journal of Clinical Pharmacology.

[40]  A. Baruzzi,et al.  Carbamazepine and carbamazepine-10, 11-epoxide concentrations in human brain. , 1977, British journal of clinical pharmacology.

[41]  S. Garattini,et al.  Carbamazepine pharmacokinetics in young, adult and pregnant rats. Relation to pharmacological effects. , 1976, Archives internationales de pharmacodynamie et de therapie.

[42]  S. Garattini,et al.  Further observations on the interactions between phenobarbital and diphenylhydantoin during chronic treatment in the rat. , 1972, Biochemical pharmacology.

[43]  S. Garattini,et al.  Carbamazepine plasma and tissue levels in the rat. , 1971, Biochemical pharmacology.

[44]  J. P. Dreier,et al.  Regional and time dependent variations of low Mg2+ induced epileptiform activity in rat temporal cortex slices , 2004, Experimental Brain Research.

[45]  S. Sisodiya,et al.  Drug resistance in epilepsy: human epilepsy. , 2002, Novartis Foundation symposium.

[46]  W. Löscher Animal models of drug-resistant epilepsy. , 2002, Novartis Foundation symposium.

[47]  D. Begley,et al.  Drug resistance in epilepsy: the role of the blood-brain barrier. , 2002, Novartis Foundation symposium.

[48]  P. Schwartzkroin,et al.  Extracellular chloride and the maintenance of spontaneous epileptiform activity in rat hippocampal slices. , 1999, Journal of neurophysiology.

[49]  R. Dingledine,et al.  Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. , 1988, Journal of neurophysiology.