Radar response of periodic vegetation canopies

Abstract Vector radiative transfer theory is used to model the scattered intensity from a layer of randomly oriented particles over a periodic rough surface. To account for the periodic nature of row-structured vegetation, the number density of particles within the layer is assumed to be varying periodically in the horizontal direction. Using Fourier series expansions and orthogonality properties, the radiative transfer equation is solved for the transformation matrix relating the incident and scattered intensities, from which the backscattering coefficient of the layer can be computed for any incidence direction and polarization configuration. The experimental component of this investigation consisted of radar observations at 1–5,4–75, and 9–5 GHz made by a truck-mounted system for a field of corn under three conditions: (a) full, which means that the corn plants were in their natural state, (b) defoliated, which was accomplished by stripping off the leaves and removing them, thereby leaving behind only ...