Gene Duplication and Divergence of Long Wavelength-Sensitive Opsin Genes in the Guppy, Poecilia reticulata

Female preference for male orange coloration in the genus Poecilia suggests a role for duplicated long wavelength-sensitive (LWS) opsin genes in facilitating behaviors related to mate choice in these species. Previous work has shown that LWS gene duplication in this genus has resulted in expansion of long wavelength visual capacity as determined by microspectrophotometry (MSP). However, the relationship between LWS genomic repertoires and expression of LWS retinal cone classes within a given species is unclear. Our previous study in the related species, Xiphophorus helleri, was the first characterization of the complete LWS opsin genomic repertoire in conjunction with MSP expression data in the family Poeciliidae, and revealed the presence of four LWS loci and two distinct LWS cone classes. In this study we characterized the genomic organization of LWS opsin genes by BAC clone sequencing, and described the full range of cone cell types in the retina of the colorful Cumaná guppy, Poecilia reticulata. In contrast to X. helleri, MSP data from the Cumaná guppy revealed three LWS cone classes. Comparisons of LWS genomic organization described here for Cumaná to that of X. helleri indicate that gene divergence and not duplication was responsible for the evolution of a novel LWS haplotype in the Cumaná guppy. This lineage-specific divergence is likely responsible for a third additional retinal cone class not present in X. helleri, and may have facilitated the strong sexual selection driven by female preference for orange color patterns associated with the genus Poecilia.

[1]  S. Yokoyama Molecular evolution of vertebrate visual pigments , 2000, Progress in Retinal and Eye Research.

[2]  Peter B. McGarvey,et al.  UniRef: comprehensive and non-redundant UniProt reference clusters , 2007, Bioinform..

[3]  J. Graves,et al.  Cone visual pigments of monotremes: Filling the phylogenetic gap , 2008, Visual Neuroscience.

[4]  F. Breden,et al.  Females prefer carotenoid colored males as mates in the pentamorphic livebearing fish, Poecilia parae , 2003, Naturwissenschaften.

[5]  H. J. Alexander,et al.  Sexual isolation and extreme morphological divergence in the Cumaná guppy: a possible case of incipient speciation , 2004, Journal of evolutionary biology.

[6]  N. Blow,et al.  Genetic analyses of visual pigments of the pigeon (Columba livia). , 1999, Genetics.

[7]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[8]  A. Basbaum,et al.  The senses : a comprehensive reference , 2008 .

[9]  William H. Press,et al.  Numerical Recipes in Pascal , 2007 .

[10]  J. Bowmaker,et al.  Vision in Fish , 2008 .

[11]  S. Yokoyama,et al.  The molecular genetics and evolution of red and green color vision in vertebrates. , 2001, Genetics.

[12]  F. Breden,et al.  Male predation risk determines female preference in the Trinidad guppy , 1987, Nature.

[13]  J. Taylor,et al.  A Fish Eye Out of Water: Ten Visual Opsins in the Four-Eyed Fish, Anableps anableps , 2009, PloS one.

[14]  Jeremy Nathans,et al.  Role of a locus control region in the mutually exclusive expression of human red and green cone pigment genes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[15]  P. Green,et al.  Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.

[16]  E. MacNichol A unifying presentation of photopigment spectra , 1986, Vision Research.

[17]  James C. Wilgenbusch,et al.  AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics , 2008, Bioinform..

[18]  T. Cronin,et al.  Application of an invariant spectral form to the visual pigments of crustaceans: Implications regarding the binding of the chromophore , 1988, Vision Research.

[19]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[20]  A. R. Templeton,et al.  PHYLOGENETIC INFERENCE FROM RESTRICTION ENDONUCLEASE CLEAVAGE SITE MAPS WITH PARTICULAR REFERENCE TO THE EVOLUTION OF HUMANS AND THE APES , 1983, Evolution; international journal of organic evolution.

[21]  Shoji Kawamura,et al.  Gene duplication and spectral diversification of cone visual pigments of zebrafish. , 2003, Genetics.

[22]  J. Endler,et al.  GEOGRAPHIC VARIATION IN FEMALE PREFERENCES FOR MALE TRAITS IN POECILIA RETICULATA , 1995, Evolution; international journal of organic evolution.

[23]  W. Chow,et al.  Genomic organization and characterization of two vomeronasal 1 receptor-like genes (ora1 and ora2) in Atlantic salmon Salmo salar. , 2008, Marine genomics.

[24]  S. Yokoyama,et al.  Convergent evolution of the red- and green-like visual pigment genes in fish, Astyanax fasciatus, and human. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[25]  S. Kawamura,et al.  Identification of a locus control region for quadruplicated green-sensitive opsin genes in zebrafish , 2007, Proceedings of the National Academy of Sciences.

[26]  J. Lythgoe,et al.  Visual pigment polymorphism in the guppy poecilia reticulata , 1987, Vision Research.

[27]  S. Yokoyama,et al.  The "five-sites" rule and the evolution of red and green color vision in mammals. , 1998, Molecular biology and evolution.

[28]  D. Reznick,et al.  Molecular phylogenetic relationships and the evolution of the placenta in Poecilia (Micropoecilia) (Poeciliidae: Cyprinodontiformes). , 2010, Molecular phylogenetics and evolution.

[29]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[30]  Narmada Thanki,et al.  CDD: specific functional annotation with the Conserved Domain Database , 2008, Nucleic Acids Res..

[31]  Hiroshi Mitani,et al.  Functional characterization of visual opsin repertoire in Medaka (Oryzias latipes). , 2006, Gene.

[32]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[33]  Detlef Weigel,et al.  Opsin gene duplication and diversification in the guppy, a model for sexual selection , 2007, Proceedings of the Royal Society B: Biological Sciences.

[34]  Kazutaka Katoh,et al.  Multiple alignment of DNA sequences with MAFFT. , 2009, Methods in molecular biology.

[35]  D. Weigel,et al.  Linkage Analysis Reveals the Independent Origin of Poeciliid Sex Chromosomes and a Case of Atypical Sex Inheritance in the Guppy (Poecilia reticulata) , 2009, Genetics.

[36]  J. Endler,et al.  Correlated Evolution of Female Mating Preferences and Male Color Patterns in the Guppy Poecilia reticulata , 1990, Science.

[37]  F. Breden,et al.  Genomic organization of duplicated short wave-sensitive and long wave-sensitive opsin genes in the green swordtail, Xiphophorus helleri , 2010, BMC Evolutionary Biology.

[38]  David M Hunt,et al.  Evolution of the cichlid visual palette through ontogenetic subfunctionalization of the opsin gene arrays. , 2006, Molecular biology and evolution.

[39]  Detlef Weigel,et al.  Genome‐wide single nucleotide polymorphisms reveal population history and adaptive divergence in wild guppies , 2010, Molecular ecology.

[40]  D. Hartl,et al.  Convergent loss of an anciently duplicated, functionally divergent RH2 opsin gene in the fugu and Tetraodon pufferfish lineages. , 2005, Gene.

[41]  D. Weigel,et al.  Genetic linkage map of the guppy, Poecilia reticulata, and quantitative trait loci analysis of male size and colour variation , 2009, Proceedings of the Royal Society B: Biological Sciences.

[42]  K. Carleton Cichlid fish visual systems: mechanisms of spectral tuning. , 2009, Integrative zoology.

[43]  J. Lythgoe,et al.  The visual pigment basis for cone polymorphism in the guppy, Poecilia reticulata , 1990, Vision Research.

[44]  Gregory L. Owens,et al.  The opsin repertoire of Jenynsia onca: a new perspective on gene duplication and divergence in livebearers , 2009, BMC Research Notes.

[45]  P. Green,et al.  Consed: a graphical tool for sequence finishing. , 1998, Genome research.

[46]  Alexei J Drummond,et al.  Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. , 2006, Molecular biology and evolution.

[47]  Donald J. Zack,et al.  A locus control region adjacent to the human red and green visual pigment genes , 1992, Neuron.

[48]  Andrew M. Jenkinson,et al.  Ensembl 2009 , 2008, Nucleic Acids Res..

[49]  J. Taylor,et al.  The molecular basis of color vision in colorful fish: Four Long Wave-Sensitive (LWS) opsins in guppies (Poecilia reticulata) are defined by amino acid substitutions at key functional sites , 2008, BMC Evolutionary Biology.

[50]  Ingo Schlupp,et al.  Spectral sensitivity of mollies: comparing surface‐ and cave‐dwelling Atlantic mollies, Poecilia mexicana , 2006 .

[51]  J. Endler Natural and sexual selection on color patterns in poeciliid fishes , 1983, Environmental Biology of Fishes.

[52]  E. Loew A third, ultraviolet-sensitive, visual pigment in the Tokay gecko (Gekko gekko) , 1994, Vision Research.

[53]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[54]  F. Breden,et al.  Extreme polymorphism in a Y-linked sexually selected trait , 2004, Heredity.

[55]  Hidetoshi Shimodaira,et al.  Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference , 1999, Molecular Biology and Evolution.

[56]  J. Mullikin,et al.  SSAHA: a fast search method for large DNA databases. , 2001, Genome research.

[57]  Jaa Nylander,et al.  MrModeltest 2.2. Program Distributed by the Author , 2004 .

[58]  Hideki Innan,et al.  The Power of the Methods for Detecting Interlocus Gene Conversion , 2010, Genetics.

[59]  T. Spady,et al.  Population variation in opsin expression in the bluefin killifish, Lucania goodei: a real-time PCR study , 2004, Journal of Comparative Physiology A.

[60]  K. Carleton,et al.  Gene duplication and differential gene expression play an important role in the diversification of visual pigments in fish. , 2009, Integrative and comparative biology.

[61]  A. Houde MATE CHOICE BASED UPON NATURALLY OCCURRING COLOR‐PATTERN VARIATION IN A GUPPY POPULATION , 1987, Evolution; international journal of organic evolution.

[62]  Tatiana Tatusova,et al.  NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins , 2004, Nucleic Acids Res..

[63]  A. Kodric‐Brown Female preference and sexual selection for male coloration in the guppy (Poecilia reticulata) , 1985, Behavioral Ecology and Sociobiology.

[64]  P Green,et al.  Base-calling of automated sequencer traces using phred. II. Error probabilities. , 1998, Genome research.