Hilbert's projective metric in quantum information theory
暂无分享,去创建一个
[1] Mary Beth Ruskai,et al. BEYOND STRONG SUBADDITIVITY? IMPROVED BOUNDS ON THE CONTRACTION OF GENERALIZED RELATIVE ENTROPY , 1994 .
[2] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[3] A. Winter,et al. ON THE EXISTENCE OF PHYSICAL TRANSFORMATIONS BETWEEN SETS OF QUANTUM STATES , 2003, quant-ph/0307227.
[4] M. Nussbaum,et al. Asymptotic Error Rates in Quantum Hypothesis Testing , 2007, Communications in Mathematical Physics.
[5] K. Audenaert,et al. Entanglement cost under positive-partial-transpose-preserving operations. , 2003, Physical review letters.
[6] Y. Lim. Hilbert’s projective metric on Lorenz cones and Birkhoff formula for Lorentzian compressions , 2007 .
[7] I. Chuang,et al. Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .
[8] F. Verstraete,et al. The χ2-divergence and mixing times of quantum Markov processes , 2010, 1005.2358.
[9] M. Horodecki,et al. Quantum entanglement , 2007, quant-ph/0702225.
[10] Elon Kohlberg,et al. The Contraction Mapping Approach to the Perron-Frobenius Theory: Why Hilbert's Metric? , 1982, Math. Oper. Res..
[11] A. Holevo. Statistical decision theory for quantum systems , 1973 .
[12] Pérès. Separability Criterion for Density Matrices. , 1996, Physical review letters.
[13] F. L. Bauer. An elementary proof of the hopf inequality for positive operators , 1965 .
[14] C. H. Bennett,et al. Quantum nonlocality without entanglement , 1998, quant-ph/9804053.
[15] Nilanjana Datta,et al. Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.
[16] A. Uhlmann,et al. A problem relating to positive linear maps on matrix algebras , 1980 .
[17] A. Uhlmann. The "transition probability" in the state space of a ∗-algebra , 1976 .
[18] C. Fuchs. Distinguishability and Accessible Information in Quantum Theory , 1996, quant-ph/9601020.
[19] P. Bushell. Hilbert's metric and positive contraction mappings in a Banach space , 1973 .
[20] E. Rains. Entanglement purification via separable superoperators , 1997, quant-ph/9707002.
[21] M. Plenio. Logarithmic negativity: a full entanglement monotone that is not convex. , 2005, Physical review letters.
[22] E. Alfsen. Compact convex sets and boundary integrals , 1971 .
[23] G. Birkhoff. Extensions of Jentzsch’s theorem , 1957 .
[24] G. Vidal,et al. Robustness of entanglement , 1998, quant-ph/9806094.
[25] P. Bushell,et al. On the Projective Contraction Ratio for Positive Linear Mappings , 1973 .
[26] M. Horodecki,et al. Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.
[27] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[28] G. Vidal,et al. Computable measure of entanglement , 2001, quant-ph/0102117.
[29] William Matthews,et al. On the Chernoff Distance for Asymptotic LOCC Discrimination of Bipartite Quantum States , 2007, 2008 IEEE Information Theory Workshop.
[30] A. Winter,et al. Distinguishability of Quantum States Under Restricted Families of Measurements with an Application to Quantum Data Hiding , 2008, 0810.2327.
[31] C. Helstrom. Quantum detection and estimation theory , 1969 .
[32] S. Eveson. Hilbert's Projective Metric and the Spectral Properties of Positive Linear Operators , 1995 .
[33] Debbie W. Leung,et al. Quantum data hiding , 2002, IEEE Trans. Inf. Theory.
[34] Werner,et al. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.
[35] Interpolation problems by completely positive maps , 2010, 1012.1675.
[36] M. Horodecki,et al. Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.