Measuring mass-loss rates from Galactic satellites

Number count profiles of many Galactic and some extra-galactic satellite systems show evidence for associated stars beyond the cut-off in density that is identified as the point of tidal limitation (e.g. Irwin & Hatzidimitriou 1995, Grillmair et al. 1995). These “extra-tidal” stars are assumed to be debris lost from the satellite due to heating or stripping by the Galactic tidal field or (in the case of globular clusters) evaporation of stars over the tidal boundary. In this contribution we present a method for using these features to measure the mass loss rate from the satellite, and test it on the results of numerical simulations of satellite disruption. A more detailed discussion of all aspects of this work can be found in (1998).

[1]  Melvyn B. Davies,et al.  The binary star population of the young cluster NGC 1818 in the Large Magellanic Cloud , 1998 .

[2]  M. Mateo,et al.  Mass Segregation in Young Large Magellanic Cloud Clusters. I. NGC 2157 , 1998 .

[3]  J. Bahcall,et al.  Models for the Galaxy and the Predicted Star Counts , 1979 .

[4]  G. Meylan,et al.  The stellar dynamics of omega centauri. , 1996, astro-ph/9612184.

[5]  Sverre J. Aarseth,et al.  On the Tidal Disruption of Dwarf Spheroidal Galaxies around the Galaxy , 1995 .

[6]  Pavel Kroupa,et al.  Dwarf spheroidal satellite galaxies without dark matter , 1997 .

[7]  S. Majewski,et al.  The Absolute Proper Motion and a Membership Survey of the Sculptor Dwarf Spheroidal Galaxy , 1995 .

[9]  Piet Hut,et al.  Dynamical evolution of globular clusters. , 1987 .

[10]  D. C. Heggie,et al.  Internal dynamics of globular clusters , 1996 .

[11]  Rami Melhem,et al.  Implementing an efficient collisionless N-body code on the Cray T3D , 1997 .

[12]  Don A. VandenBerg,et al.  Oxygen-enhanced Models for Globular Cluster Stars. II. Isochrones and Luminosity Functions , 1992 .

[13]  B. Moore Constraints on the Global Mass-to-Light Ratios and on the Extent of Dark Matter Halos in Globular Clusters and Dwarf Spheroidals , 1995, astro-ph/9511147.

[14]  Steinn Sigurdsson,et al.  Dynamics and Interactions of Binaries and Neutron Stars in Globular Clusters , 1995 .

[15]  S. Hawley,et al.  Evaporation, Tidal Disruption, and Orbital Decay of Star Clusters in a Galactic Halo , 1996 .

[16]  L. Spitzer Distribution of Galactic Clusters. , 1958 .

[17]  C. Jager The yellow hypergiants , 1998 .

[18]  S. Faber,et al.  Is there nonluminous matter in dwarf spheroidal galaxies , 1983 .

[19]  R. Gratton,et al.  The Metallicity of Palomar 1 , 1997, astro-ph/9710243.

[20]  K. Johnston A Prescription for Building the Milky Way's Halo from Disrupted Satellites , 1997, astro-ph/9710007.

[21]  David N. Spergel,et al.  The Disruption of the Sagittarius Dwarf Galaxy. , 1995 .

[22]  Kathryn V. Johnston,et al.  Fossil Signatures of Ancient Accretion Events in the Halo , 1995 .

[23]  K. Freeman,et al.  The structure and mass function of the globular cluster M3. , 1976 .

[24]  Mike Irwin,et al.  Structural parameters for the Galactic dwarf spheroidals , 1995 .

[25]  S. Hawley,et al.  Tidal Disruption and Tails from the Carina Dwarf Spheroidal Galaxy , 1996 .

[26]  Jeremiah P. Ostriker,et al.  A self-consistent field method for galactic dynamics , 1992 .

[27]  Jeremy Goodman,et al.  Influence of the Stellar Mass Function on the Evaporation Rate of Tidally Limited Postcollapse Globular Clusters , 1994 .

[28]  Global Kinematics of the Globular Cluster M15 , 1997, astro-ph/9711059.

[29]  Globular clusters with tidal tails: deep two-color star counts , 1995, astro-ph/9502039.

[30]  S. Djorgovski,et al.  What determines the stellar mass functions in globular clusters , 1993 .

[31]  Martin D. Weinberg,et al.  Evolution of globular clusters in the Galaxy , 1990 .

[32]  W. Harris,et al.  Mass functions for globular cluster main sequences based on CCD photometry and stellar models , 1986 .

[33]  S. M. Fall,et al.  Survival and disruption of galactic substructure , 1977 .

[34]  S. White,et al.  On the dynamics of the Sagittarius dwarf galaxy , 1995, astro-ph/9503022.

[35]  L. Hernquist,et al.  An Analytical Model for Spherical Galaxies and Bulges , 1990 .

[36]  S. Djorgovski,et al.  Rates of collapse and evaporation of globular clusters , 1992, Nature.

[37]  Ivan R. King,et al.  The structure of star clusters. I. an empirical density law , 1962 .

[38]  Gerard Gilmore,et al.  The Kinematics, Orbit, and Survival of the Sagittarius Dwarf Spheroidal Galaxy , 1997 .

[39]  D. Heggie,et al.  On the effects of dynamical evolution on the initial mass function of globular clusters , 1997, astro-ph/9705073.

[40]  M. Feast,et al.  Analysis of Radial Velocities of Stars and Nebulae in the Magellanic Clouds , 1961 .

[41]  T. Kundić,et al.  Tidal-Shock Relaxation: A Reexamination of Tidal Shocks in Stellar Systems , 1995 .

[42]  J. Gunn,et al.  Dynamical studies of globular clusters based on photoelectric radial velocities of individual stars. I. M3. , 1979 .

[43]  S. Holt,et al.  Back to the Galaxy , 1993 .

[44]  Jeremiah P. Ostriker,et al.  On the evolution of globular cluster systems. I - Present characteristics and rate of destruction in our Galaxy , 1988 .

[45]  M. Weinberg,et al.  Evolution of the Galactic globular cluster system , 1997 .