A Hierarchical Location Prediction Neural Network for Twitter User Geolocation

Accurate estimation of user location is important for many online services. Previous neural network based methods largely ignore the hierarchical structure among locations. In this paper, we propose a hierarchical location prediction neural network for Twitter user geolocation. Our model first predicts the home country for a user, then uses the country result to guide the city-level prediction. In addition, we employ a character-aware word embedding layer to overcome the noisy information in tweets. With the feature fusion layer, our model can accommodate various feature combinations and achieves state-of-the-art results over three commonly used benchmarks under different feature settings. It not only improves the prediction accuracy but also greatly reduces the mean error distance.

[1]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[2]  Jie Tang,et al.  A Probabilistic Framework for Location Inference from Social Media , 2017, ArXiv.

[3]  Tomoki Taniguchi,et al.  A Simple Scalable Neural Networks based Model for Geolocation Prediction in Twitter , 2016, NUT@COLING.

[4]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[5]  Kathleen M. Carley,et al.  Crowd sourcing disaster management: The complex nature of Twitter usage in Padang Indonesia , 2016 .

[6]  Jeffrey Nichols,et al.  Where Is This Tweet From? Inferring Home Locations of Twitter Users , 2012, ICWSM.

[7]  Geoffrey E. Hinton,et al.  Layer Normalization , 2016, ArXiv.

[8]  Stephen Wan,et al.  CSIRO Data61 at the WNUT Geo Shared Task , 2016, NUT@COLING.

[9]  Ron Sivan,et al.  Web-a-where: geotagging web content , 2004, SIGIR '04.

[10]  Alexander J. Smola,et al.  Discovering geographical topics in the twitter stream , 2012, WWW.

[11]  Timothy Baldwin,et al.  Twitter Geolocation Prediction Shared Task of the 2016 Workshop on Noisy User-generated Text , 2016, NUT@COLING.

[12]  Timothy Baldwin,et al.  Twitter User Geolocation Using a Unified Text and Network Prediction Model , 2015, ACL.

[13]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[14]  Timothy Baldwin,et al.  Exploiting Text and Network Context for Geolocation of Social Media Users , 2015, NAACL.

[15]  Timothy Baldwin,et al.  Semi-supervised User Geolocation via Graph Convolutional Networks , 2018, ACL.

[16]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Daniele Quercia,et al.  Recommending Social Events from Mobile Phone Location Data , 2010, 2010 IEEE International Conference on Data Mining.

[18]  Jason Baldridge,et al.  Hierarchical Discriminative Classification for Text-Based Geolocation , 2014, EMNLP.

[19]  Jussi Karlgren,et al.  Inferring the location of authors from words in their texts , 2015, NODALIDA.

[20]  Duc Minh Nguyen,et al.  Multiview Deep Learning for Predicting Twitter Users' Location , 2017, ArXiv.

[21]  Timothy Baldwin,et al.  A Neural Model for User Geolocation and Lexical Dialectology , 2017, ACL.

[22]  Kathleen M. Carley,et al.  Location Order Recovery in Trails with Low Temporal Resolution , 2019, IEEE Transactions on Network Science and Engineering.

[23]  Yutaka Matsuo,et al.  Earthquake shakes Twitter users: real-time event detection by social sensors , 2010, WWW '10.

[24]  Mingzhe Wang,et al.  LINE: Large-scale Information Network Embedding , 2015, WWW.

[25]  Timothy Baldwin,et al.  A Stacking-based Approach to Twitter User Geolocation Prediction , 2013, ACL.

[26]  Michelle R. Guy,et al.  Twitter earthquake detection: earthquake monitoring in a social world , 2012 .

[27]  Tomoki Taniguchi,et al.  Unifying Text, Metadata, and User Network Representations with a Neural Network for Geolocation Prediction , 2017, ACL.

[28]  Patrice Enjalbert,et al.  Geographic reference analysis for geographic document querying , 2003, HLT-NAACL 2003.

[29]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[30]  Luis Gravano,et al.  Exploiting Geographical Location Information of Web Pages , 1999, WebDB.

[31]  Lars Backstrom,et al.  Find me if you can: improving geographical prediction with social and spatial proximity , 2010, WWW '10.

[32]  Yu Zhang,et al.  RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation , 2017, CIKM.

[33]  Scott A. Hale,et al.  Where in the World Are You? Geolocation and Language Identification in Twitter* , 2013, ArXiv.

[34]  Timothy Baldwin,et al.  Geolocation Prediction in Social Media Data by Finding Location Indicative Words , 2012, COLING.

[35]  Kathleen M. Carley,et al.  A Large-Scale Empirical Study of Geotagging Behavior on Twitter , 2019, 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

[36]  Jason Baldridge,et al.  Supervised Text-based Geolocation Using Language Models on an Adaptive Grid , 2012, EMNLP.

[37]  Taro Miyazaki,et al.  Twitter Geolocation using Knowledge-Based Methods , 2018, NUT@EMNLP.

[38]  Kathleen M. Carley,et al.  On Predicting Geolocation of Tweets Using Convolutional Neural Networks , 2017, SBP-BRiMS.

[39]  Jason Baldridge,et al.  Simple supervised document geolocation with geodesic grids , 2011, ACL.

[40]  Ed H. Chi,et al.  Tweets from Justin Bieber's heart: the dynamics of the location field in user profiles , 2011, CHI.

[41]  Fang Chen,et al.  A Unified Neural Network Model for Geolocating Twitter Users , 2018, CoNLL.