Bézier extraction and adaptive refinement of truncated hierarchical NURBS
暂无分享,去创建一个
[1] Tom Lyche,et al. Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..
[2] Michael A. Scott,et al. Isogeometric spline forests , 2014 .
[3] Trond Kvamsdal,et al. On the similarities and differences between Classical Hierarchical, Truncated Hierarchical and LR B-splines , 2015 .
[4] Daniel Peterseim,et al. Analysis-suitable adaptive T-mesh refinement with linear complexity , 2014, Comput. Aided Geom. Des..
[5] H. Nguyen-Xuan,et al. Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .
[6] Christian Miehe,et al. A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits , 2010 .
[7] René de Borst,et al. The role of the Bézier extraction operator for T‐splines of arbitrary degree: linear dependencies, partition of unity property, nesting behaviour and local refinement , 2015 .
[8] John A. Evans,et al. Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .
[9] Bert Jüttler,et al. Enhancing isogeometric analysis by a finite element-based local refinement strategy , 2012 .
[10] Xin Li,et al. Hierarchical T-splines: Analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis , 2014, 1404.4346.
[11] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[12] Bert Jüttler,et al. Algorithms and Data Structures for Truncated Hierarchical B-splines , 2012, MMCS.
[13] David R. Forsey,et al. Hierarchical B-spline refinement , 1988, SIGGRAPH.
[14] Trond Kvamsdal,et al. Isogeometric analysis using LR B-splines , 2014 .
[15] Nicholas S. North,et al. T-spline simplification and local refinement , 2004, SIGGRAPH 2004.
[16] René de Borst,et al. A numerical assessment of phase-field models for brittle and cohesive fracture: Γ-Convergence and stress oscillations , 2015 .
[17] Andrea Bressan,et al. Some properties of LR-splines , 2013, Comput. Aided Geom. Des..
[18] T. Hughes,et al. Local refinement of analysis-suitable T-splines , 2012 .
[19] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[20] Hendrik Speleers,et al. Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..
[21] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[22] Laura De Lorenzis,et al. A review on phase-field models of brittle fracture and a new fast hybrid formulation , 2015 .
[23] B. Simeon,et al. Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .
[24] Christian Miehe,et al. Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations , 2010 .
[25] B. Simeon,et al. A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .
[26] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..
[27] Lucia Romani,et al. A general matrix representation for non-uniform B-spline subdivision with boundary control , 2007 .
[28] Gilles A. Francfort,et al. Revisiting brittle fracture as an energy minimization problem , 1998 .
[29] Anh-Vu Vuong. Adaptive Hierarchical Isogeometric Finite Element Methods , 2012 .
[30] John A. Evans,et al. An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .
[31] Thomas J. R. Hughes,et al. On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..
[32] P. Bar-Yoseph,et al. Mechanically based models: Adaptive refinement for B‐spline finite element , 2003 .
[33] Cv Clemens Verhoosel,et al. A phase-field description of dynamic brittle fracture , 2012 .
[34] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[35] F. Cirak,et al. A subdivision-based implementation of the hierarchical b-spline finite element method , 2013 .
[36] Zohar Yosibash,et al. Singularities in Elliptic Boundary Value Problems and Elasticity and Their Connection with Failure Initiation , 2011 .