Bézier extraction and adaptive refinement of truncated hierarchical NURBS

Abstract This contribution presents Bezier extraction of truncated hierarchical B -splines and the application of the approach to adaptive isogeometric analysis. The developed procedures allow for the implementation of hierarchical B -splines and NURBS without the need for an explicit truncation of the basis. Moreover, standard procedures of adaptive finite element analysis for error estimation and marking of elements are directly applicable due to the strict use of an element viewpoint. Starting from a multi-level nested mesh that results from uniform h -refinement, standard Bezier extraction is applied to active elements that contribute to the hierarchical approximation. This results in a multi-level system of equations without communication between individual hierarchy levels. A hierarchical subdivision operator is developed to recover this communication by transforming the multi-level system of equations into a hierarchical system of equations. It is demonstrated that this approach implicitly defines the truncated hierarchical basis in terms of a simple matrix multiplication. In this way, the implementation effort is reduced to a minimum as shape function routines and Bezier extraction procedures remain unchanged compared to standard isogeometric analysis. The convergence and the computational efficiency of the approach are examined in three different demonstration problems of heat conduction, linear elasticity, and the phase-field modelling of brittle fracture.

[1]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[2]  Michael A. Scott,et al.  Isogeometric spline forests , 2014 .

[3]  Trond Kvamsdal,et al.  On the similarities and differences between Classical Hierarchical, Truncated Hierarchical and LR B-splines , 2015 .

[4]  Daniel Peterseim,et al.  Analysis-suitable adaptive T-mesh refinement with linear complexity , 2014, Comput. Aided Geom. Des..

[5]  H. Nguyen-Xuan,et al.  Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .

[6]  Christian Miehe,et al.  A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits , 2010 .

[7]  René de Borst,et al.  The role of the Bézier extraction operator for T‐splines of arbitrary degree: linear dependencies, partition of unity property, nesting behaviour and local refinement , 2015 .

[8]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[9]  Bert Jüttler,et al.  Enhancing isogeometric analysis by a finite element-based local refinement strategy , 2012 .

[10]  Xin Li,et al.  Hierarchical T-splines: Analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis , 2014, 1404.4346.

[11]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[12]  Bert Jüttler,et al.  Algorithms and Data Structures for Truncated Hierarchical B-splines , 2012, MMCS.

[13]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[14]  Trond Kvamsdal,et al.  Isogeometric analysis using LR B-splines , 2014 .

[15]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.

[16]  René de Borst,et al.  A numerical assessment of phase-field models for brittle and cohesive fracture: Γ-Convergence and stress oscillations , 2015 .

[17]  Andrea Bressan,et al.  Some properties of LR-splines , 2013, Comput. Aided Geom. Des..

[18]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[19]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[20]  Hendrik Speleers,et al.  Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..

[21]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[22]  Laura De Lorenzis,et al.  A review on phase-field models of brittle fracture and a new fast hybrid formulation , 2015 .

[23]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[24]  Christian Miehe,et al.  Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations , 2010 .

[25]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[26]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[27]  Lucia Romani,et al.  A general matrix representation for non-uniform B-spline subdivision with boundary control , 2007 .

[28]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[29]  Anh-Vu Vuong Adaptive Hierarchical Isogeometric Finite Element Methods , 2012 .

[30]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[31]  Thomas J. R. Hughes,et al.  On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..

[32]  P. Bar-Yoseph,et al.  Mechanically based models: Adaptive refinement for B‐spline finite element , 2003 .

[33]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[34]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[35]  F. Cirak,et al.  A subdivision-based implementation of the hierarchical b-spline finite element method , 2013 .

[36]  Zohar Yosibash,et al.  Singularities in Elliptic Boundary Value Problems and Elasticity and Their Connection with Failure Initiation , 2011 .