ENTANGLEMENT PROPERTIES OF ADIABATIC QUANTUM ALGORITHMS

In this paper, by constructing a more entangled quantum system, we shorten the adiabatic quantum search algorithm to constant time. On the other hand, we show that the speed-up of adiabatic quantum algorithms by selecting particular adiabatic evolution paths or injecting energy into the quantum system can be explained as a form of entanglement enlargement. These findings suggest that entanglement plays a fundamental role for the efficiency of algorithm performance.

[1]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[2]  R. Schutzhold,et al.  Adiabatic quantum algorithms as quantum phase transitions: First versus second order , 2006, quant-ph/0608017.

[3]  Daowen Qiu,et al.  ENTANGLEMENT IN ADIABATIC QUANTUM SEARCHING ALGORITHMS , 2008 .

[4]  S. Popescu,et al.  Good dynamics versus bad kinematics: is entanglement needed for quantum computation? , 1999, Physical review letters.

[5]  Randy Kobes,et al.  Energy and efficiency of adiabatic quantum search algorithms , 2003 .

[6]  N. Cerf,et al.  Quantum search by local adiabatic evolution , 2001, quant-ph/0107015.

[7]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[8]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[9]  Seth Lloyd,et al.  Adiabatic Quantum Computation is Equivalent to Standard Quantum Computation , 2007, SIAM J. Comput..

[10]  Marko Znidaric Scaling of the running time of the quantum adiabatic algorithm for propositional satisfiability , 2005 .

[11]  J. Latorre,et al.  Universality of entanglement and quantum-computation complexity , 2003, quant-ph/0311017.

[12]  Roman Orus,et al.  Adiabatic quantum computation and quantum phase transitions , 2004 .

[13]  Daniel A Lidar,et al.  Simple proof of equivalence between adiabatic quantum computation and the circuit model. , 2007, Physical review letters.

[14]  Zhaohui Wei,et al.  A modified quantum adiabatic evolution for the Deutsch–Jozsa problem , 2006 .

[15]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.