Electric Field Guided Assembly of One-Dimensional Nanostructures for High Performance Sensors

Various nanowire or nanotube-based devices have been demonstrated to fulfill the anticipated future demands on sensors. To fabricate such devices, electric field-based methods have demonstrated a great potential to integrate one-dimensional nanostructures into various forms. This review paper discusses theoretical and experimental aspects of the working principles, the assembled structures, and the unique functions associated with electric field-based assembly. The challenges and opportunities of the assembly methods are addressed in conjunction with future directions toward high performance sensors.

[1]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[2]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[3]  Chul Ki Kim,et al.  Multi-walled carbon nanotubes/TiO2 composite nanofiber by electrospinning , 2008 .

[4]  Hywel Morgan,et al.  AC ELECTROKINETICS: COLLOIDS AND NANOPARTICLES. , 2002 .

[5]  Ji Won Suk,et al.  FABRICATION AND MEASUREMENT OF SUSPENDED SILICON CARBIDE NANOWIRE DEVICES AND DEFLECTION , 2009 .

[6]  John Wilkinson,et al.  Aligned single‐wall carbon nanotube polymer composites using an electric field , 2006 .

[7]  Fang Chen,et al.  Controllable interconnection of single-walled carbon nanotubes under ac electric field. , 2005, The journal of physical chemistry. B.

[8]  Charles M. Lieber,et al.  Nanoelectronics from the bottom up. , 2007, Nature materials.

[9]  B. Gates,et al.  Electrokinetic assembly of selenium and silver nanowires into macroscopic fibers. , 2010, ACS nano.

[10]  Katsuhiko Ariga,et al.  Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. , 2007, Physical chemistry chemical physics : PCCP.

[11]  Qian Wang,et al.  Carbon Nanotube Transistor Arrays for Multistage Complementary Logic and Ring Oscillators , 2002, Nano Letters.

[12]  K. R. Atkinson,et al.  Strong, Transparent, Multifunctional, Carbon Nanotube Sheets , 2005, Science.

[13]  Adrian M. Ionescu,et al.  A Study of Deterministic Positioning of Carbon Nanotubes by Dielectrophoresis , 2009 .

[14]  Jian Zhang,et al.  Manipulation of ZnO nanostructures using dielectrophoretic effect , 2008 .

[15]  Ashok Mulchandani,et al.  Nanowire‐Based Electrochemical Biosensors , 2006 .

[16]  Lixin Dong,et al.  Shaping Nanoelectrodes for High-Precision Dielectrophoretic Assembly of Carbon Nanotubes , 2009, IEEE Transactions on Nanotechnology.

[17]  Maria Dimaki,et al.  Frequency dependence of the structure and electrical behaviour of carbon nanotube networks assembled by dielectrophoresis , 2005 .

[18]  G. Redmond,et al.  Dielectrophoretic self-assembly of polarized light emitting poly(9,9-dioctylfluorene) nanofibre arrays , 2011, Nanotechnology.

[19]  I. I. Bobrinetskii,et al.  Electrophoresis in the tasks of purifying, separating, and integrating carbon nanotubes , 2009 .

[20]  R. Krupke,et al.  Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes , 2003, Science.

[21]  Soohyun Kim,et al.  Deterministic fabrication of carbon nanotube probes using the dielectrophoretic assembly and electrical detection. , 2009, The Review of scientific instruments.

[22]  Ahmed Busnaina,et al.  Three-dimensional assembly of single-walled carbon nanotube interconnects using dielectrophoresis , 2007, Nanotechnology.

[23]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[24]  Jingqi Li,et al.  Influences of ac electric field on the spatial distribution of carbon nanotubes formed between electrodes , 2006 .

[25]  Peidong Yang,et al.  Semiconductor nanowire: what's next? , 2010, Nano letters.

[26]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[27]  André DeHon,et al.  Array-based architecture for FET-based, nanoscale electronics , 2003 .

[28]  Fei Teng,et al.  High-voltage electrophoretic deposition for vertically aligned forests of one-dimensional nanoparticles. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[29]  Jun Jiao,et al.  Dielectrophoretically controlled fabrication of single-crystal nickel silicide nanowire interconnects. , 2005, Nano letters.

[30]  Woon-Hong Yeo,et al.  Size-specific concentration of DNA to a nanostructured tip using dielectrophoresis and capillary action. , 2009, The journal of physical chemistry. B.

[31]  Richard Leonelli,et al.  Empirical tight-binding calculations of the electronic structure of dilute III–V–N semiconductor alloys , 2004 .

[32]  Martin Tajmar,et al.  The dielectrophoretic attachment of nanotube fibres on tungsten needles , 2007 .

[33]  Adrian M. Ionescu,et al.  Floating-potential self-assembly of singe-walled carbon nanotube field effect transistors by ac-dielectrophoresis , 2011 .

[34]  L. Lechuga,et al.  LSPR-based nanobiosensors , 2009 .

[35]  Changxin Chen,et al.  Carbon nanotube multi-channeled field-effect transistors. , 2006, Journal of nanoscience and nanotechnology.

[36]  Junya Suehiro Fabrication and characterization of nanomaterial-based sensors using dielectrophoresis. , 2010, Biomicrofluidics.

[37]  Prashant V Kamat,et al.  Self-assembled linear bundles of single wall carbon nanotubes and their alignment and deposition as a film in a dc field. , 2004, Journal of the American Chemical Society.

[38]  Thomas B. Jones,et al.  Electromechanics of Particles , 1995 .

[39]  Otto Zhou,et al.  Assembly of 1D Nanostructures into Sub‐micrometer Diameter Fibrils with Controlled and Variable Length by Dielectrophoresis , 2003 .

[40]  Ted Belytschko,et al.  Immersed electrokinetic finite element method , 2007 .

[41]  Yoon Keun Kwak,et al.  Carbon nanotube samples prepared by an electric-field-assisted assembly method appropriate for the fabrication processes of tip-based nanodevices , 2008 .

[42]  Evin Gultepe,et al.  Large scale 3D vertical assembly of single-wall carbon nanotubes at ambient temperatures. , 2008, Nanotechnology.

[43]  Nikhil Koratkar,et al.  Viscoelasticity in carbon nanotube composites , 2005, Nature materials.

[44]  Tae-Hong Kim,et al.  Influence of electric field type on the assembly of single walled carbon nanotubes , 2004 .

[45]  Chang-Soo Han,et al.  Use of dielectrophoresis in the fabrication of an atomic force microscope tip with a carbon nanotube: a numerical analysis , 2005, Nanotechnology.

[46]  Nathalia Peixoto,et al.  Electrochemical characterization of multi-walled carbon nanotube coated electrodes for biological applications , 2009 .

[47]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[48]  Wei Zhang,et al.  Alignment of multiwalled carbon nanotubes in bulk epoxy composites via electric field , 2009 .

[49]  M. Kotaki,et al.  A review on polymer nanofibers by electrospinning and their applications in nanocomposites , 2003 .

[50]  A. Rinzler,et al.  Carbon nanotube actuators , 1999, Science.

[51]  Changxin Chen,et al.  Manipulation of single-wall carbon nanotubes into dispersively aligned arrays between metal electrodes , 2006 .

[52]  Liangbing Hu,et al.  Carbon nanotube thin films: fabrication, properties, and applications. , 2010, Chemical reviews.

[53]  Heiko B. Weber,et al.  Simultaneous Deposition of Metallic Bundles of Single-walled Carbon Nanotubes Using Ac-dielectrophoresis , 2003 .

[54]  Rodney S. Ruoff,et al.  Controlled deposition of nanotubes on opposing electrodes , 2005 .

[55]  Seiji Akita,et al.  Fabrication and characterization of high-resolution AFM tips with high-quality double-wall carbon nanotubes , 2006 .

[56]  S Selvarasah,et al.  Design, Fabrication, and Characterization of Three-Dimensional Single-Walled Carbon Nanotube Assembly and Applications As Thermal Sensors , 2011, IEEE Transactions on Nanotechnology.

[57]  H. B. Weber,et al.  Contacting single bundles of carbon nanotubes with alternating electric fields , 2002 .

[58]  Junya Suehiro,et al.  Schottky-type response of carbon nanotube NO2 gas sensor fabricated onto aluminum electrodes by dielectrophoresis , 2006 .

[59]  Yoon Keun Kwak,et al.  Purification of carbon nanotubes through an electric field near the arranged microelectrodes , 2007 .

[60]  Tianhong Cui,et al.  Well-aligned and suspended single-walled carbon nanotube film: Directed self-assembly, patterning, and characterization , 2009 .

[61]  Cheng Ling Chang,et al.  Manipulation of nanoparticles and biomolecules by electric field and surface tension , 2008 .

[62]  Woon-Hong Yeo,et al.  Hybrid nanofibril assembly using an alternating current electric field and capillary action. , 2009, Journal of nanoscience and nanotechnology.

[63]  George C. Schatz,et al.  Multi-walled carbon nanotubes experiencing electrical breakdown as gas sensors , 2004 .

[64]  Libao An,et al.  Real-time gap impedance monitoring of dielectrophoretic assembly of multiwalled carbon nanotubes , 2008 .

[65]  R. Annamalai,et al.  Electrophoretic drawing of continuous fibers of single-walled carbon nanotubes , 2005 .

[66]  Xiangfeng Duan,et al.  High-performance thin-film transistors using semiconductor nanowires and nanoribbons , 2003, Nature.

[67]  Andrew G. Rinzler,et al.  Fibers of aligned single-walled carbon nanotubes: Polarized Raman spectroscopy , 2000 .

[68]  Junya Suehiro,et al.  Fabrication of a carbon nanotube-based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy , 2003 .

[69]  Maria Dimaki,et al.  Investigation of parameters controlling the dielectrophoretic assembly of carbon nanotubes on microelectrodes. , 2008, Journal of nanoscience and nanotechnology.

[70]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[71]  Wanlin Guo,et al.  Electric-field-enhanced assembly of single-walled carbon nanotubes on a solid surface. , 2005, The journal of physical chemistry. B.

[72]  Christian A. Martin,et al.  Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites , 2005 .

[73]  R. Osiander,et al.  Wafer-level assembly of carbon nanotube networks using dielectrophoresis , 2008, Nanotechnology.

[74]  Yoichi Akasaka,et al.  Fabrication of a carbon nanotube device using a patterned electrode and a local electric field , 2003 .

[75]  A. Di Carlo,et al.  Gas sensing using single wall carbon nanotubes ordered with dielectrophoresis , 2005 .

[76]  Yu Huang,et al.  Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices , 2001, Nature.

[77]  Qi Zhu,et al.  Manipulation of carbon nanotubes using AC dielectrophoresis , 2005 .

[78]  Saeid Nahavandi,et al.  Particle trapping using dielectrophoretically patterned carbon nanotubes , 2010, Electrophoresis.

[79]  Seiji Akita,et al.  RAPID COMMUNICATION: Orientation and purification of carbon nanotubes using ac electrophoresis , 1998 .

[80]  Irving P. Herman,et al.  Precise positioning of single-walled carbon nanotubes by ac dielectrophoresis , 2006 .

[81]  Mary B Chan-Park,et al.  Advances in carbon-nanotube assembly. , 2007, Small.

[82]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[83]  Hirofumi Tanaka,et al.  Vertical alignment of single-walled carbon nanotube films formed by electrophoretic deposition. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[84]  Xinqi Chen,et al.  Aligning single-wall carbon nanotubes with an alternating-current electric field , 2001 .

[85]  Vahid Majidi,et al.  High resolution capillary electrophoresis of carbon nanotubes. , 2002, Journal of the American Chemical Society.

[86]  Yoke Khin Yap,et al.  Surfactant-free dielectrophoretic deposition of multi-walled carbon nanotubes with tunable deposition density , 2010 .

[87]  Himani Sharma,et al.  Fabrication of Carbon Nanotube Field-Effect Transistors with Metal and Semiconductor Electrodes , 2007 .

[88]  Wing Kam Liu,et al.  Dielectrophoretic assembly of nanowires. , 2006, The journal of physical chemistry. B.

[89]  Chang-Soo Han,et al.  Use of Dielectrophoresis in a High-Yield Fabrication of a Carbon Nanotube Tip , 2005 .

[90]  A. R. Boccaccini,et al.  Electrophoretic deposition of carbon nanotube–ceramic nanocomposites , 2010 .

[91]  Gwo-Bin Lee,et al.  Manipulation and patterning of carbon nanotubes utilizing optically induced dielectrophoretic forces , 2010 .

[92]  Jian Zhang,et al.  Dielectrophoretic manipulation of nano-materials and its application to micro/nano-sensors , 2008 .

[93]  Otto Zhou,et al.  Controlled Assembly of Carbon Nanotube Fibrils by Dielectrophoresis , 2003 .

[94]  Franco Cacialli,et al.  Electric‐Field‐Assisted Alignment of Supramolecular Fibers , 2006 .

[95]  James J Riley,et al.  Fluid flow-assisted dielectrophoretic assembly of nanowires. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[96]  Jun Jiao,et al.  Floating-potential dielectrophoresis-controlled fabrication of single-carbon-nanotube transistors and their electrical properties. , 2005, The journal of physical chemistry. B.

[97]  Haim H. Bau,et al.  Controlled Nanoassembly and Construction of Nanofluidic Devices , 2006 .

[98]  P. Bøggild,et al.  Single- and multiwalled carbon nanotube networks and bundles assembled on microelectrodes , 2004 .

[99]  J. Rogers,et al.  Ultrathin Films of Single‐Walled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects , 2009 .

[100]  Xiangfeng Duan,et al.  High-yield self-limiting single-nanowire assembly with dielectrophoresis. , 2010, Nature nanotechnology.

[101]  P. A. Smith,et al.  Electric-field assisted assembly and alignment of metallic nanowires , 2000 .

[102]  M.-W. Wang,et al.  Alignment of MWCNTs in polymer composites by dielectrophoresis , 2008 .

[103]  Noriaki Sano,et al.  Application of dielectrophoresis to fabrication of carbon nanohorn gas sensor , 2006 .

[104]  Otto Zhou,et al.  Rapid and reproducible fabrication of carbon nanotube AFM probes by dielectrophoresis. , 2005, Nano letters.

[105]  Michael S. Strano,et al.  Capillary Electrophoresis Separations of Bundled and Individual Carbon Nanotubes , 2003 .

[106]  Yoon Keun Kwak,et al.  Nanoscale fabrication of a single multiwalled carbon nanotube attached atomic force microscope tip using an electric field , 2005 .

[107]  Makoto Ueda,et al.  Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor , 2006, Nanotechnology.

[108]  H. Wong,et al.  Assembly and Electrical Characterization of Multiwall Carbon Nanotube Interconnects , 2008, IEEE Transactions on Nanotechnology.

[109]  Dimos Poulikakos,et al.  Electrokinetic framework of dielectrophoretic deposition devices , 2010 .

[110]  Chang-Soo Han,et al.  Controlled assembly of single SWNTs bundle using dielectrophoresis , 2005 .

[111]  Yuefeng Zhu,et al.  Process improvement in preparation of epoxy/carbon nanotube composites , 2011 .

[112]  I. I. Bobrinetskii,et al.  Methods of parallel integration of carbon nanotubes during the formation of functional devices for microelectronics and sensor technologies , 2009 .

[113]  Kozo Saito,et al.  Fabrication of nanoelectrodes based on controlled placement of carbon nanotubes using alternating-current electric field , 2004 .

[114]  W.J. Li,et al.  Dielectrophoretic batch fabrication of bundled carbon nanotube thermal sensors , 2004, IEEE Transactions on Nanotechnology.

[115]  Jae Hyun Chung,et al.  Nanoscale gap fabrication and integration of carbon nanotubes by micromachining , 2002 .

[116]  Norio Shinya,et al.  Effects of surfactants on spinning carbon nanotube fibers by an electrophoretic method , 2010, Science and technology of advanced materials.

[117]  Jingqi Li,et al.  Fabrication of carbon nanotube field effect transistors by AC dielectrophoresis method , 2004 .

[118]  Constantina Lekakou,et al.  Electrophoresis and orientation of multiple wall carbon nanotubes in polymer solution , 2010 .

[119]  F. Avilés,et al.  Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by an electric field , 2011 .

[120]  Yoon Keun Kwak,et al.  Effect of a square wave on an assembly of multi-walled carbon nanotubes using AC dielectrophoresis , 2009 .

[121]  Kyong-Hoon Lee,et al.  Toward large-scale integration of carbon nanotubes. , 2004, Langmuir : the ACS journal of surfaces and colloids.