Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model

The Aw-Rascle-Zhang (ARZ) model can be interpreted as a generalization of the Lighthill-Whitham-Richards (LWR) model, possessing a family of fundamental diagram curves, each of which represents a class of drivers with a different empty road velocity. A weakness of this approach is that different drivers possess vastly different densities at which traffic flow stagnates. This drawback can be overcome by modifying the pressure relation in the ARZ model, leading to the generalized Aw-Rascle-Zhang (GARZ) model. We present an approach to determine the parameter functions of the GARZ model from fundamental diagram measurement data. The predictive accuracy of the resulting data-fitted GARZ model is compared to other traffic models by means of a three-detector test setup, employing two types of data: vehicle trajectory data, and sensor data. This work also considers the extension of the ARZ and the GARZ models to models with a relaxation term, and conducts an investigation of the optimal relaxation time.

[1]  Pierre Degond,et al.  A Model for the Formation and Evolution of Traffic Jams , 2008 .

[2]  Kerner,et al.  Cluster effect in initially homogeneous traffic flow. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  Axel Klar,et al.  Kinetic Derivation of Macroscopic Anticipation Models for Vehicular Traffic , 2000, SIAM J. Appl. Math..

[4]  Gordon F. Newell,et al.  A SIMPLIFIED THEORY OF KINEMATIC WAVES , 1991 .

[5]  Alexandre M. Bayen,et al.  Convex Formulations of Data Assimilation Problems for a Class of Hamilton-Jacobi Equations , 2011, SIAM J. Control. Optim..

[6]  Michael Schreckenberg,et al.  A cellular automaton model for freeway traffic , 1992 .

[7]  G. F. Newell Nonlinear Effects in the Dynamics of Car Following , 1961 .

[8]  M. Fukui,et al.  Traffic Flow in 1D Cellular Automaton Model Including Cars Moving with High Speed , 1996 .

[9]  Harold J Payne,et al.  MODELS OF FREEWAY TRAFFIC AND CONTROL. , 1971 .

[10]  P. I. Richards Shock Waves on the Highway , 1956 .

[11]  Benedetto Piccoli,et al.  Numerical simulations of traffic data via fluid dynamic approach , 2009, Appl. Math. Comput..

[12]  D. Helbing Traffic and related self-driven many-particle systems , 2000, cond-mat/0012229.

[13]  Benjamin Seibold,et al.  Constructing set-valued fundamental diagrams from Jamiton solutions in second order traffic models , 2012, Networks Heterog. Media.

[14]  M. Herty,et al.  Fokker-Planck Asymptotics for Traffic Flow Models , 2010, 1009.2771.

[15]  A. Bayen,et al.  A traffic model for velocity data assimilation , 2010 .

[16]  Nicola Bellomo,et al.  On the Modeling of Traffic and Crowds: A Survey of Models, Speculations, and Perspectives , 2011, SIAM Rev..

[17]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[18]  Kerner,et al.  Structure and parameters of clusters in traffic flow. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  Tai-Ping Liu Hyperbolic conservation laws with relaxation , 1987 .

[20]  B D Greenshields,et al.  A study of traffic capacity , 1935 .

[21]  L. Chambers Linear and Nonlinear Waves , 2000, The Mathematical Gazette.

[22]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[23]  Benjamin Seibold,et al.  Effect of the choice of stagnation density in data-fitted first- and second-order traffic models , 2013, 1308.0393.

[24]  Harold J Payne,et al.  FREFLO: A MACROSCOPIC SIMULATION MODEL OF FREEWAY TRAFFIC , 1979 .

[25]  Carlos F. Daganzo,et al.  Fundamentals of Transportation and Traffic Operations , 1997 .

[26]  Nakayama,et al.  Dynamical model of traffic congestion and numerical simulation. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[27]  Rinaldo M. Colombo,et al.  Hyperbolic Phase Transitions in Traffic Flow , 2003, SIAM J. Appl. Math..

[28]  C. Daganzo Requiem for second-order fluid approximations of traffic flow , 1995 .

[29]  M J Lighthill,et al.  On kinematic waves II. A theory of traffic flow on long crowded roads , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[30]  Shimao Fan Data-fitted generic second order macroscopic traffic flow models , 2013 .

[31]  Robert Herman,et al.  Kinetic theory of vehicular traffic , 1971 .

[32]  J. Lebacque,et al.  Generic Second Order Traffic Flow Modelling , 2007 .

[33]  H. M. Zhang A NON-EQUILIBRIUM TRAFFIC MODEL DEVOID OF GAS-LIKE BEHAVIOR , 2002 .

[34]  Blake Temple,et al.  Systems of conservation laws with coinciding shock and rarefaction curves , 1982 .

[35]  A. Bayen,et al.  On sequential data assimilation for scalar macroscopic traffic flow models , 2012 .

[36]  Rinaldo M. Colombo,et al.  A 2-Phase Traffic Model Based on a Speed Bound , 2010, SIAM J. Appl. Math..

[37]  M. Rascle An improved macroscopic model of traffic flow: Derivation and links with the Lighthill-Whitham model , 2002 .

[38]  Carlos F. Daganzo,et al.  In Traffic Flow, Cellular Automata = Kinematic Waves , 2004 .

[39]  Michel Rascle,et al.  Resurrection of "Second Order" Models of Traffic Flow , 2000, SIAM J. Appl. Math..

[40]  Alexandros Sopasakis,et al.  Stochastic Description of Traffic Flow , 2008 .

[41]  M R Flynn,et al.  Self-sustained nonlinear waves in traffic flow. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[43]  J. P. Lebacque Les modèles macroscopiques de trafic , 1993 .

[44]  James M. Greenberg,et al.  Extensions and Amplifications of a Traffic Model of Aw and Rascle , 2000, SIAM J. Appl. Math..

[45]  M. Ganesh Kumar,et al.  Mobile Century Using GPS Mobile Phones as Traffic Sensors : A Field Experiment , 2008 .

[46]  Axel Klar,et al.  A class of multi-phase traffic theories for microscopic, kinetic and continuum traffic models , 2012, Comput. Math. Appl..

[47]  Wolfram Mauser,et al.  On the Fundamental Diagram of Traffic Flow , 2006, SIAM J. Appl. Math..

[48]  Axel Klar,et al.  On Vlasov‐Fokker‐Planck Type Kinetic Models for Multilane Traffic Flow , 2003 .

[49]  Alexandre M. Bayen,et al.  Lax–Hopf Based Incorporation of Internal Boundary Conditions Into Hamilton–Jacobi Equation. Part I: Theory , 2010, IEEE Transactions on Automatic Control.

[50]  Paola Goatin,et al.  The Aw-Rascle vehicular traffic flow model with phase transitions , 2006, Math. Comput. Model..

[51]  Benjamin Seibold,et al.  A comparison of data-fitted first order traffic models and their second order generalizations via trajectory and sensor data , 2012, 1208.0382.

[52]  Alexandros Sopasakis,et al.  The Chapman-Enskog Expansion: A Novel Approach to Hierarchical Extensions of Lighthill-Whitham Models , 1999 .

[53]  Warren F. Phillips,et al.  A kinetic model for traffic flow with continuum implications , 1979 .

[54]  James M. Greenberg Congestion Redux , 2004, SIAM J. Appl. Math..

[55]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[56]  L. A. Pipes An Operational Analysis of Traffic Dynamics , 1953 .

[57]  C. Daganzo THE CELL TRANSMISSION MODEL.. , 1994 .

[58]  R. Colombo,et al.  Traffic Flow Models with Phase Transitions , 2006 .

[59]  C. D. Levermore,et al.  Hyperbolic conservation laws with stiff relaxation terms and entropy , 1994 .

[60]  Alexandre M. Bayen,et al.  A General Phase Transition Model for Vehicular Traffic , 2011, SIAM J. Appl. Math..

[61]  Mauro Garavello,et al.  Traffic Flow on Networks , 2006 .

[62]  Helbing Improved fluid-dynamic model for vehicular traffic. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[63]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[64]  C. Chalons,et al.  Transport-equilibrium schemes for computing contact discontinuities in traffic flow modeling , 2007 .

[65]  Michael Herty,et al.  Analytical and numerical investigations of refined macroscopictraffic flow models , 2010 .

[66]  Rohana J. Karunamuni,et al.  A generalized reflection method of boundary correction in kernel density estimation , 2005 .

[67]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[68]  K. Nishinari,et al.  A new stochastic cellular automaton model on traffic flow and its jamming phase transition , 2006, cond-mat/0611455.