Supermodular functions and the complexity of MAX CSP

[1]  R. Steele,et al.  Optimization , 2005, Encyclopedia of Biometrics.

[2]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[3]  Lars Engebretsen The Nonapproximability of Non-Boolean Predicates , 2004, SIAM J. Discret. Math..

[4]  V. Dalmau,et al.  Towards a dichotomy theorem for the counting constraint satisfaction problem , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[5]  Peter Jeavons,et al.  Quantified Constraints: Algorithms and Complexity , 2003, CSL.

[6]  Martin C. Cooper,et al.  A Maximal Tractable Class of Soft Constraints , 2003, IJCAI.

[7]  Andrei A. Bulatov,et al.  Tractable conservative constraint satisfaction problems , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[8]  Rajeev Motwani,et al.  A combinatorial algorithm for MAX CSP , 2003, Inf. Process. Lett..

[9]  Alan J. Hoffman,et al.  On greedy algorithms, partially ordered sets, and submodular functions , 2003, IBM J. Res. Dev..

[10]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraints on a three-element set , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[11]  Venkatesan Guruswami,et al.  Is constraint satisfaction over two variables always easy? , 2004, Random Struct. Algorithms.

[12]  Lars Engebretsen The Non-approximability of Non-Boolean Predicates , 2001, RANDOM-APPROX.

[13]  Satoru Iwata,et al.  A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.

[14]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[15]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.

[16]  Luca Trevisan,et al.  The Approximability of Constraint Satisfaction Problems , 2001, SIAM J. Comput..

[17]  Alexander Schrijver,et al.  A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.

[18]  Peter Jonsson,et al.  Boolean constraint satisfaction: complexity results for optimization problems with arbitrary weights , 2000, Theor. Comput. Sci..

[19]  Giorgio Gambosi,et al.  Complexity and approximation: combinatorial optimization problems and their approximability properties , 1999 .

[20]  Giorgio Gambosi,et al.  Complexity and Approximation , 1999, Springer Berlin Heidelberg.

[21]  Peter Jeavons,et al.  On the Algebraic Structure of Combinatorial Problems , 1998, Theor. Comput. Sci..

[22]  Akiyoshi Shioura,et al.  Minimization of an M-convex Function , 1998, Discret. Appl. Math..

[23]  Maria J. Serna,et al.  The (Parallel) Approximability of Non-Boolean Satisfiability Problems and Restricted Integer Programming , 1998, STACS.

[24]  Uri Zwick,et al.  Approximation algorithms for constraint satisfaction problems involving at most three variables per constraint , 1998, SODA '98.

[25]  H. Narayanan Submodular functions and electrical networks , 1997 .

[26]  Rainer E. Burkard,et al.  Perspectives of Monge Properties in Optimization , 1996, Discret. Appl. Math..

[27]  Nadia Creignou,et al.  A Dichotomy Theorem for Maximum Generalized Satisfiability Problems , 1995, J. Comput. Syst. Sci..

[28]  Michel X. Goemans,et al.  Minimizing submodular functions over families of sets , 1995, Comb..

[29]  Zvi Galil,et al.  Proceedings of the 30th IEEE symposium on Foundations of computer science , 1994, FOCS 1994.

[30]  Mihalis Yannakakis,et al.  The Complexity of Multiterminal Cuts , 1994, SIAM J. Comput..

[31]  Rüdiger Rudolf Recognition of D-dimensional Monge Arrays , 1994, Discret. Appl. Math..

[32]  Peter L. Hammer,et al.  Discrete Applied Mathematics , 1993 .

[33]  藤重 悟 Submodular functions and optimization , 1991 .

[34]  P. Favati Convexity in nonlinear integer programming , 1990 .

[35]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[36]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[37]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[38]  Andrew V. Goldberg,et al.  A new approach to the maximum flow problem , 1986, STOC '86.

[39]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[40]  Donald M. Topkis,et al.  Minimizing a Submodular Function on a Lattice , 1978, Oper. Res..