FIRE SPECTROSCOPY OF FIVE LATE-TYPE T DWARFS DISCOVERED WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER

We present the discovery of five late-type T dwarfs identified with the Wide-field Infrared Survey Explorer (WISE). Low-resolution near-infrared spectroscopy obtained with the Magellan Folded-port InfraRed Echellette reveal strong H_2O and CH_4 absorption in all five sources, and spectral indices and comparison to spectral templates indicate classifications ranging from T5.5 to T8.5:. The spectrum of the latest-type source, WISE J1812+2721, is an excellent match to that of the T8.5 companion brown dwarf Wolf 940B. WISE-based spectrophotometric distance estimates place these T dwarfs at 12-13 pc from the Sun, assuming they are single. Preliminary fits of the spectral data to the atmosphere models of Saumon & Marley indicate effective temperatures ranging from 600 K to 930 K, both cloudy and cloud-free atmospheres, and a broad range of ages and masses. In particular, two sources show evidence of both low surface gravity and cloudy atmospheres, tentatively supporting a trend noted in other young brown dwarfs and exoplanets. In contrast, the high proper motion T dwarf WISE J2018–7423 exhibits a suppressed K-band peak and blue spectrophotometric J – K colors indicative of an old, massive brown dwarf; however, it lacks the broadened Y-band peak seen in metal-poor counterparts. These results illustrate the broad diversity of low-temperature brown dwarfs that will be uncovered with WISE.

[1]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[2]  J. Bochanski,et al.  DISCOVERY OF A CANDIDATE FOR THE COOLEST KNOWN BROWN DWARF , 2011, 1102.5411.

[3]  R. F. Jameson,et al.  A very cool brown dwarf in UKIDSS DR1 , 2007, 0708.0655.

[4]  J. Davy Kirkpatrick,et al.  New spectral types L and T , 2005 .

[5]  Michael C. Liu,et al.  Characterizing Young Brown Dwarfs Using Low-Resolution Near-Infrared Spectra , 2006, astro-ph/0611408.

[6]  J. Linsky On the Pressure-Induced Opacity of Molecular Hydrogen in Late-Type Stars , 1969 .

[7]  F. Allard,et al.  Infrared Spectroscopy of Substellar Objects in Orion , 2001, astro-ph/0105154.

[8]  M. Irwin,et al.  The UKIRT Infrared Deep Sky Survey (UKIDSS) , 2006, astro-ph/0604426.

[9]  David A. Golimowski,et al.  THE 0.8–14.5 μm SPECTRA OF MID-L TO MID-T DWARFS: DIAGNOSTICS OF EFFECTIVE TEMPERATURE, GRAIN SEDIMENTATION, GAS TRANSPORT, AND SURFACE GRAVITY , 2009, 0906.2991.

[10]  Michael C. Cushing,et al.  THE FIRST ULTRA-COOL BROWN DWARF DISCOVERED BY THE WIDE-FIELD INFRARED SURVEY EXPLORER , 2010, 1011.2279.

[11]  Andrew S. Ackerman,et al.  Precipitating Condensation Clouds in Substellar Atmospheres , 2001, astro-ph/0103423.

[12]  M. Osorio,et al.  The discovery of a very cool binary system , 2010, 1001.4393.

[13]  B. Oppenheimer,et al.  Infrared Spectrum of the Cool Brown Dwarf Gl 229B , 1995, Science.

[14]  Tae-Soo Pyo,et al.  A COMBINED SUBARU/VLT/MMT 1–5 μm STUDY OF PLANETS ORBITING HR 8799: IMPLICATIONS FOR ATMOSPHERIC PROPERTIES, MASSES, AND FORMATION , 2011, 1101.1973.

[15]  S. Seager,et al.  Clouds and chemistry: Ultracool dwarf atmospheric properties from optical and infrared colors , 2002 .

[16]  A. Burgasser The Physical Properties of HD 3651B: An Extrasolar Nemesis? , 2006, astro-ph/0611542.

[17]  John T. Rayner,et al.  An Infrared Spectroscopic Sequence of M, L, and T Dwarfs , 2004, astro-ph/0412313.

[18]  Michael C. Liu,et al.  CFBDS J005910.90-011401.3: Reaching the T-Y Brown Dwarf transition? , 2008, 0802.4387.

[19]  M. Cushing,et al.  SDSS J141624.08+134826.7: BLUE L DWARFS AND NON-EQUILIBRIUM CHEMISTRY , 2010, 1009.2802.

[20]  Paolo Conconi,et al.  Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series , 2012 .

[21]  A. Burgasser,et al.  ULAS J141623.94+134836.3: A BLUE T DWARF COMPANION TO A BLUE L DWARF , 2010, 1002.0645.

[22]  M. McElwain,et al.  THE 2MASS WIDE-FIELD T DWARF SEARCH. II. DISCOVERY OF THREE T DWARFS IN THE SOUTHERN HEMISPHERE , 2003, astro-ph/0307374.

[23]  David G. Monet,et al.  � 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. DISCOVERY OF FOUR FIELD METHANE (T-TYPE) DWARFS WITH THE TWO MICRON ALL-SKY SURVEY 1 , 1999 .

[24]  A. T. Tokunaga,et al.  The Mauna Kea Observatories Near‐Infrared Filter Set. I. Defining Optimal 1–5 Micron Bandpasses , 2002 .

[25]  David W. Gellatly,et al.  A LOW-DISPERSION SURVEY SPECTROGRAPH (LDSS-2) FOR THE WILLIAM HERSCHEL TELESCOPE , 1994 .

[26]  C. Dahn,et al.  Summary of U.S. Naval Observatory parallaxes , 1980 .

[27]  The minimum mass for star formation, and the origin of binary brown dwarfs , 2006, astro-ph/0610039.

[28]  Adam J. Burgasser,et al.  The 2MASS Wide-Field T Dwarf Search. III. Seven New T Dwarfs and Other Cool Dwarf Discoveries , 2004, astro-ph/0402325.

[29]  Michael C. Liu,et al.  SDSS J141624.08+134826.7: A NEARBY BLUE L DWARF FROM THE SLOAN DIGITAL SKY SURVEY , 2009, 0912.3796.

[30]  Adam Burrows,et al.  Beyond the T Dwarfs: Theoretical Spectra, Colors, and Detectability of the Coolest Brown Dwarfs , 2003, astro-ph/0304226.

[31]  Rebecca A. Bernstein,et al.  FIRE: a near-infrared cross-dispersed echellette spectrometer for the Magellan telescopes , 2008, Astronomical Telescopes + Instrumentation.

[32]  et al,et al.  Toward Spectral Classification of L and T Dwarfs: Infrared and Optical Spectroscopy and Analysis , 2001, astro-ph/0108443.

[33]  John T. Rayner,et al.  Spextool: A Spectral Extraction Package for SpeX, a 0.8–5.5 Micron Cross‐Dispersed Spectrograph , 2004 .

[34]  M. Skrutskie,et al.  FanCam—A Near-Infrared Camera for the Fan Mountain Observatory , 2009 .

[35]  D. Saumon,et al.  The Evolution of L and T Dwarfs in Color-Magnitude Diagrams , 2008, 0808.2611.

[36]  G. L. Wycoff,et al.  THE THIRD US NAVAL OBSERVATORY CCD ASTROGRAPH CATALOG (UCAC3) , 2004, 1003.2136.

[37]  William B. Hubbard,et al.  Cool zero-metallicity stellar atmospheres , 1994 .

[38]  A. Burrows,et al.  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 11/26/04 A METHOD FOR DETERMINING THE PHYSICAL PROPERTIES OF THE COLDEST KNOWN BROWN DWARFS , 2005 .

[39]  A. Robin,et al.  Finding ultracool brown dwarfs with MegaCam on CFHT: method and first results , 2008, 0804.1477.

[40]  A. Burrows,et al.  A Systematic Study of Departures from Chemical Equilibrium in the Atmospheres of Substellar Mass Objects , 2007, 0705.3922.

[41]  B. Fegley,et al.  Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars: I. Carbon, Nitrogen, and Oxygen , 2002 .

[42]  A. Burgasser T Dwarfs and the Substellar Mass Function. I. Monte Carlo Simulations , 2004, astro-ph/0407624.

[43]  K. Freese,et al.  The Mass Function of Low-Mass Halo Stars: Limits on Baryonic Halo Dark Matter , 1996, astro-ph/9602051.

[44]  M. Osorio,et al.  Exploring the substellar temperature regime down to ∼550 K , 2008, 0806.0067.

[45]  Adam J. Burgasser,et al.  Optical Spectroscopy of 2MASS Color-Selected Ultracool Subdwarfs , 2006 .

[46]  Rebecca A. Bernstein,et al.  The FIRE infrared spectrometer at Magellan: construction and commissioning , 2010, Astronomical Telescopes + Instrumentation.

[47]  L. Hillenbrand,et al.  HD 203030B: An Unusually Cool Young Substellar Companion near the L/T Transition , 2006, astro-ph/0607514.

[48]  et al,et al.  Near-Infrared Photometry and Spectroscopy of L and T Dwarfs: The Effects of Temperature, Clouds, and Gravity , 2004, astro-ph/0402451.

[49]  H Germany,et al.  A Method of Correcting Near‐Infrared Spectra for Telluric Absorption , 2002, astro-ph/0211255.

[50]  M. Cushing,et al.  PROPERTIES OF THE T8.5 DWARF WOLF 940 B , 2010, 1007.1252.

[51]  Adam J. Burgasser,et al.  Infrared Parallaxes for Methane T Dwarfs , 2003 .

[52]  D. A. Golimowski,et al.  Preliminary Parallaxes of 40 L and T Dwarfs from the US Naval Observatory Infrared Astrometry Program , 2004 .

[53]  S. Kulkarni,et al.  Discovery of a cool brown dwarf , 1995, Nature.

[54]  S. Casewell,et al.  Eight new T4.5-T7.5 dwarfs discovered in the UKIDSS large area survey data release 1 , 2007, 0705.3727.

[55]  W. Vacca,et al.  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 ATMOSPHERIC PARAMETERS OF FIELD L AND T DWARFS 1 , 2022 .

[56]  Michael E. Brown,et al.  The spectra of t dwarfs I: near-infrared data and spectral classification , 2001, astro-ph/0108452.

[57]  J. Bochanski,et al.  THE BROWN DWARF KINEMATICS PROJECT. II. DETAILS ON NINE WIDE COMMON PROPER MOTION VERY LOW MASS COMPANIONS TO NEARBY STARS, , 2009, 0911.1363.

[58]  T. Roellig,et al.  Discovery of Two Nearby Peculiar L Dwarfs from the 2MASS Proper-Motion Survey: Young or Metal-Rich? , 2008, 0806.1059.

[59]  Mike Davis,et al.  Spartan infrared camera: high-resolution imaging for the SOAR Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[60]  Dahn,et al.  Discovery of a Brown Dwarf Companion to Gliese 570ABC: A 2MASS T Dwarf Significantly Cooler than Gliese 229B. , 2000, The Astrophysical journal.

[61]  A. T. Tokunaga,et al.  The Mauna Kea observatories near-infrared filter set. II. Specifications for a new JHKL ' M ' filter set for infrared astronomy , 2001 .

[62]  Michael C. Liu,et al.  Physical and Spectral Characteristics of the T8 and Later Type Dwarfs , 2007, 0705.2602.

[63]  Ben Zuckerman,et al.  The AB Doradus Moving Group , 2004 .

[64]  Z.Zhang,et al.  The discovery of an M4+T8.5 binary system , 2009, 0902.1812.

[65]  et al,et al.  The Discovery of a Field Methane Dwarf from Sloan Digital Sky Survey Commissioning Data , 1999, astro-ph/9905391.

[66]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[67]  David A. Golimowski,et al.  A Unified Near-Infrared Spectral Classification Scheme for T Dwarfs , 2006 .

[68]  THE 2MASS WIDE-FIELD T DWARF SEARCH. IV. HUNTING OUT T DWARFS WITH METHANE IMAGING , 2005, astro-ph/0508150.

[69]  R. Doyon,et al.  The ultracool-field dwarf luminosity-function and space de nsity from the Canada-France Brown Dwarf Survey ? , 2010, 1008.2301.

[70]  Doug Tody,et al.  The Iraf Data Reduction And Analysis System , 1986, Astronomical Telescopes and Instrumentation.

[71]  D. A. Golimowski,et al.  L' AND M' Photometry Of Ultracool Dwarfs , 2004 .

[72]  Michael C. Liu,et al.  NEAR-INFRARED SPECTROSCOPY OF THE EXTRASOLAR PLANET HR 8799 b , 2010, 1008.4582.

[73]  Michael C. Liu,et al.  THE BENCHMARK ULTRACOOL SUBDWARF HD 114762B: A TEST OF LOW-METALLICITY ATMOSPHERIC AND EVOLUTIONARY MODELS , 2009, 0910.1604.

[74]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[75]  C. Griffith,et al.  Disequilibrium chemistry in a brown dwarf's atmosphere: Carbon monoxide in Gliese 229B , 1999 .

[76]  Michael C. Liu,et al.  The Late-T Dwarf Companion to the Exoplanet Host Star HD 3651: A New Benchmark for Gravity and Metallicity Effects in Ultracool Spectra , 2007, astro-ph/0701111.

[77]  John T. Rayner,et al.  SpeX: A Medium‐Resolution 0.8–5.5 Micron Spectrograph and Imager for the NASA Infrared Telescope Facility , 2003 .

[78]  P. Hinz,et al.  HIGH-CONTRAST 3.8 μm IMAGING OF THE BROWN DWARF/PLANET-MASS COMPANION TO GJ 758 , 2010, 1008.1983.

[79]  A. Burrows,et al.  The Spectra of T Dwarfs. II. Red Optical Data , 2003, astro-ph/0305139.

[80]  R. Scholz ULAS J141623.94$ + $134836.3 - a faint common proper motion companion of a nearby L dwarf. Serendipitous discovery of a cool brown dwarf in UKIDSS DR6 , 2010, 1001.2743.

[81]  R. Scholz Hip 63510C, Hip 73786B, and nine new isolated high proper motion T dwarf candidates from UKIDSS DR6 and SDSS DR7 , 2010, 1002.3073.

[82]  Stephen S. Eikenberry,et al.  A Wide-Field Infrared Camera for the Palomar 200-inch Telescope , 2003, SPIE Astronomical Telescopes + Instrumentation.

[83]  T. Barman,et al.  A Sample of Very Young Field L Dwarfs and Implications for the Brown Dwarf “Lithium Test” at Early Ages , 2008, 0808.3153.

[84]  Wendy L. Freedman,et al.  The Carnegie Supernova Project: The Low‐Redshift Survey , 2005, astro-ph/0512039.

[85]  W. Brandner,et al.  SPATIALLY RESOLVED SPECTROSCOPY OF THE EXOPLANET HR 8799 c , 2010, 1001.2017.

[86]  K. Lodders Alkali Element Chemistry in Cool Dwarf Atmospheres , 1999 .

[87]  M. Tamura,et al.  Parallaxes and physical properties of 11 mid-to-late T dwarfs , 2010, 1010.1135.

[88]  Dominic J. Benford,et al.  THE FIRST HUNDRED BROWN DWARFS DISCOVERED BY THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE) , 2011, 1108.4677.

[89]  Tony Farrell,et al.  IRIS2: a working infrared multi-object spectrograph and camera , 2004, SPIE Astronomical Telescopes + Instrumentation.

[90]  Patrick J. Lowrance,et al.  Discovery of a Very Young Field L Dwarf, 2MASS J01415823-4633574 , 2005 .

[91]  Pennsylvania State University,et al.  Seventy-One New L and T Dwarfs from the Sloan Digital Sky Survey , 2006, astro-ph/0601089.

[92]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[93]  Dagny L. Looper,et al.  Discovery of 11 New T Dwarfs in the Two Micron All Sky Survey, Including a Possible L/T Transition Binary , 2007, 0706.1601.

[94]  Michael C. Liu,et al.  Subtle Signatures of Multiplicity in Late-type Dwarf Spectra: The Unresolved M8.5 + T5 Binary 2MASS J03202839–0446358 , 2008, 0803.0295.

[95]  S. R. Kulkarni,et al.  The Spectrum of the Brown Dwarf Gliese 229B , 1997 .

[96]  J. Bochanski,et al.  CLOUDS IN THE COLDEST BROWN DWARFS: FIRE SPECTROSCOPY OF ROSS 458C , 2010, 1009.5722.

[97]  Mark Clampin,et al.  Optical Images of an Exosolar Planet 25 Light-Years from Earth , 2008, Science.

[98]  Ammonia as a tracer of chemical equilibrium in the T7.5 dwarf Gliese 570D , 2006, astro-ph/0605563.