On embeddability and stresses of graphs

Gluck has proven that triangulated 2-spheres are generically 3-rigid. Equivalently, planar graphs are generically 3-stress free. We show that already the K5-minor freeness guarantees the stress freeness. More generally, we prove that every Kr+2-minor free graph is generically r-stress free for 1≤r≤4. (This assertion is false for r≥6.) Some further extensions are discussed.

[1]  G. Ringel,et al.  Solution of the heawood map-coloring problem. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Wolfgang Mader,et al.  3n − 5 Edges Do Force a Subdivision of , 1998, Comb..

[3]  Yves Colin de Verdière,et al.  On a new graph invariant and a criterion for planarity , 1991, Graph Structure Theory.

[4]  S. A. Lavrenchenko,et al.  Irreducible triangulations of the torus , 1990 .

[5]  Alexander Schrijver,et al.  On the invariance of Colin de Verdière's graph parameter under clique sums , 1995 .

[6]  B. Roth,et al.  The rigidity of graphs , 1978 .

[7]  H. Gluck Almost all simply connected closed surfaces are rigid , 1975 .

[8]  W. Mader Homomorphiesätze für Graphen , 1968 .

[9]  Eran Nevo Rigidity and the Lower Bound Theorem for Doubly Cohen–Macaulay Complexes , 2008, Discret. Comput. Geom..

[10]  P. Seymour,et al.  Linkless embeddings of graphs in 3-space , 1993, math/9301216.

[11]  C. Kuratowski Sur le problème des courbes gauches en Topologie , 1930 .

[12]  B. Roth,et al.  The rigidity of graphs, II , 1979 .

[13]  Zi-Xia Song,et al.  The extremal function for K8- minors , 2005, J. Comb. Theory, Ser. B.

[14]  Huet Théorèmes statiques sur les polygones et les polyèdres , 1844 .

[15]  E. Steinitz,et al.  Vorlesungen über die Theorie der Polyeder unter Einfluss der Elemente der Topologie , 1934 .

[16]  Yves Colin de Verdière,et al.  Sur un nouvel invariant des graphes et un critère de planarité , 1990, J. Comb. Theory, Ser. B.

[17]  Alexander Schrijver,et al.  A Borsuk theorem for antipodal links and a spectral characterization of linklessly embeddable graphs , 1998 .

[18]  Gil Kalai,et al.  Hyperconnectivity of graphs , 1985, Graphs Comb..

[19]  David W. Barnette,et al.  Generating the triangulations of the projective plane , 1982, J. Comb. Theory, Ser. B.

[20]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[21]  Y. D. Verdière On a novel graph invariant and a planarity criterion , 1990 .

[22]  Carl W. Lee Generalized Stress and Motions , 1994 .

[23]  Zi-Xia Song,et al.  The Extremal Function for K 9 Minors , 2005 .

[25]  Walter Whiteley,et al.  Vertex Splitting in Isostatic Frameworks , 1990 .