The Refractive Index Structure Parameter/Atmospheric Optical Turbulence Model: CN2

Abstract : The CN2 model is a semi-empirical algorithm that makes a quantitative assessment of atmospheric optical turbulence. The algorithm uses surface layer gradient assumptions applied to two levels of discrete vertical profile data to calculate the refractive index structure parameter. Model results can be obtained for unstable, stable, and near-neutral atmospheric conditions. The CN2 model has been benchmarked on data from the REBAL'92 field study. The model will shortly be added to the Electro- Optics Atmospheric Effects Library (EOSAEL). This report gives technical and user's guide information on the CN2 model.

[1]  E. F. Bradley,et al.  Flux-Profile Relationships in the Atmospheric Surface Layer , 1971 .

[2]  Henry Rachele,et al.  MARIAH : a similarity-based method for determining wind, temperature, and humidity profile structure in the atmospheric surface layer , 1995 .

[3]  R. Stull An Introduction to Boundary Layer Meteorology , 1988 .

[4]  S. Clifford Wave Propagation in a Turbulent Medium. , 1969 .

[5]  John C. Wyngaard,et al.  Behavior of the Refractive Index Structure Parameter in the Entraining Convective Boundary Layer , 1980 .

[6]  Terry A. Howell,et al.  REBAL '92—A Cooperative Radiation and Energy Balance Field Study for Imagery and Electromagnetic Propagation , 1994 .

[7]  Edgar L. Andreas,et al.  Estimating Cn2 Over Snow And Sea Ice From Meteorological Quantities , 1988, Defense, Security, and Sensing.

[8]  Kenneth E. Kunkel,et al.  Behavior of the Temperature Structure Parameter in a Desert Basin , 1981 .

[9]  Henry Rachele,et al.  On the Subject of Geometric Spacing of Meteorological Sensors , 1991 .

[10]  R. S. Lawrence,et al.  Refractive index of water vapor in infrared windows , 1986, Annual Meeting Optical Society of America.

[11]  R. S. Lawrence,et al.  Saturation of optical scintillation by strong turbulence , 1974 .

[12]  B. Hicks,et al.  Wind profile relationships from the ‘wangara’ experiment , 1976 .

[13]  J. Owens,et al.  Optical refractive index of air: dependence on pressure, temperature and composition. , 1967, Applied optics.

[14]  E. K. Webb Profile relationships: The log‐linear range, and extension to strong stability , 1970 .

[15]  H. A. Panofsky The structure constant for the index of refraction in relation to the gradient of index of refraction in the surface layer , 1968 .

[16]  D. Levandier,et al.  Approved for Public Release; Distribution Unlimited , 1994 .

[17]  Henry Rachele,et al.  Energy Balance Model for Imagery and Electromagnetic Propagation , 1994 .

[18]  Reginald J. Hill,et al.  Implications of Monin–Obukhov Similarity Theory for Scalar Quantities , 1989 .

[19]  A. Dyer A review of flux-profile relationships , 1974 .

[20]  David H Tofsted A Surface Energy Budget Model Modifying Heat Flow by Foliage Effects , 1993 .