Recent SQUID Activities in Europe, Part II: Applications

We present an overview of recent superconducting quantum interference device (SQUID) research and development in Europe. History, theory and fundamental experiments and especially practical SQUIDs and SQUID readout were covered by Part I of this overview. Today, the SQUID itself is a rather mature device, the most sensitive magnetic flux and field detector, which finds use also as an amplifier. The current research and development work concentrates mostly on the more traditional and novel applications presented here. We briefly characterize the evolution and status of the following applications: biomagnetic (mostly medical), radiation and particle detection, geomagnetism and related, nondestructive evaluation of materials and structures (NDE), metrology, and fundamental scientific experiments. Some of these found practical acceptance, while the promise and potential of others remains largely unfulfilled. Of all these, the radiation and particle detectors attract presently the most interest and are in a phase of fast development.

[1]  Seppo P. Ahlfors,et al.  Large-area low-noise seven-channel dc SQUID magnetometer for brain research , 1987 .

[2]  J. Hutchison,et al.  A 4.2 K receiver coil and SQUID amplifier used to improve the SNR of low-field magnetic resonance images of the human arm , 1997 .

[3]  D. Drung,et al.  A Magnetic-Field-Fluctuation Thermometer for the mK Range Based on SQUID-Magnetometry , 2007, IEEE Transactions on Applied Superconductivity.

[4]  E. Kreysa,et al.  The 350 Micrometer Wavelength Superconducting Bolometer Camera for APEX , 2009 .

[5]  F. Feilitzsch,et al.  Energy dispersive X-ray spectroscopy with microcalorimeters , 2004 .

[6]  Alex I. Braginski,et al.  SQUID Activities in Europe, Part I: Devices , 2009 .

[7]  H. Meyer,et al.  HTS dc SQUID systems for geophysical prospection , 2001 .

[8]  H. Hilgenkamp Pi-phase shift Josephson structures , 2008 .

[9]  D. Cohen Magnetoencephalography: Detection of the Brain's Electrical Activity with a Superconducting Magnetometer , 1972, Science.

[10]  Jevgenijs Kaupuzs,et al.  Studies in Applied Electromagnetics and Mechanics , 2006 .

[11]  X. Barcons,et al.  EURECA: European-Japanese Microcalorimeter Array , 2008 .

[12]  R. Vaccarone An Analysis of Stability in Frequency Multiplexed TES Arrays , 2008 .

[13]  H. Dyball,et al.  Current sensing noise thermometry using a low Tc DC SQUID preamplifier , 2001 .

[14]  L. Parkkonen,et al.  122-channel squid instrument for investigating the magnetic signals from the human brain , 1993 .

[15]  E. A. Lima,et al.  The Magnetic Inverse Problem , 2006 .

[16]  Alexander B. Zorin,et al.  Progress in measurements of a single-electron pump by means of a CCC , 2003, IEEE Trans. Instrum. Meas..

[17]  Ultimate limits to magnetic imaging , 2003 .

[18]  Mark B. Ketchen,et al.  Planar coupling scheme for ultra low noise DC SQUIDs , 1981 .

[19]  J. Oppenlaender,et al.  N o n − Φ 0 − p e r i o d i c macroscopic quantum interference in one-dimensional parallel Josephson junction arrays with unconventional grating structure , 2000 .

[20]  M. Glocker,et al.  High Detection Sensitivity Achieved with Cryogenic Detectors in Combination with Matrix-Assisted Laser Desorption/Ionisation Time-of-Flight Mass Spectrometry , 2004, European journal of mass spectrometry.

[21]  David J. Lurie,et al.  DC SQUID-based NMR detection from room temperature samples , 1992 .

[22]  D. Drung,et al.  A Single-Stage SQUID Multiplexer for TES Array Readout , 2009, IEEE Transactions on Applied Superconductivity.

[23]  Cathy P. Foley,et al.  Application of high-temperature superconductor SQUIDs for ground-based TEM , 2008 .

[24]  O. Mielke,et al.  Flip-Flopping Fractional Flux Quanta , 2006, Science.

[25]  Jörn Beyer,et al.  MARE, Microcalorimeter Arrays for a Rhenium Experiment: A detector overview , 2007 .

[26]  Philip Mauskopf,et al.  Development of transition edge superconducting bolometers for the SAFARI far-infrared spectrometer on the SPICA space-borne telescope , 2008, Astronomical Telescopes + Instrumentation.

[27]  L. Hao,et al.  Inductive superconducting transition-edge photon and particle detector , 2003 .

[28]  F. Wellstood,et al.  Measurements of Magnetism and Magnetic Properties of Matter , 2006 .

[29]  John Clarke,et al.  Geophysical applications of SQUIDS , 1983 .

[30]  H. Hoenig Squid arrays for biomagnetic diagnosis , 1991 .

[31]  D. Drung,et al.  Integrated Thin-Film dc RSQUIDs for Noise Thermometry , 2000 .

[32]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[33]  A. Cerrudo,et al.  Semi automated dc-squid based CCC bridge for precision resistance measurements at the Spanish TPYCEA , 2008, 2008 Conference on Precision Electromagnetic Measurements Digest.

[34]  Jens Haueisen,et al.  Three component magnetic field data: Impact on minimum norm solutions in a biomedical application , 2005 .

[35]  J. Beyer,et al.  Novel SQUID Current Sensors With High Linearity at High Frequencies , 2009, IEEE Transactions on Applied Superconductivity.

[36]  F. Piquemal,et al.  Ultralow noise current amplifier based on a cryogenic current comparator , 2000 .

[37]  Y. Hatsukade,et al.  Vector HTS-SQUID system for ULF magnetic field monitoring , 2003 .

[38]  K.P. Humphrey,et al.  Detection of mobile targets from a moving platform using an actively shielded, adaptively balanced SQUID gradiometer , 2005, IEEE Transactions on Applied Superconductivity.

[39]  J. C. Macfarlane,et al.  A fully portable, cryocooler-based HTS SQUID NDE instrument , 2003 .

[40]  K. Reinikainen,et al.  A four-channel SQUID magnetometer for brain research. , 1984, Electroencephalography and clinical neurophysiology.

[41]  T. D. Gamble magnetotellurics with a remote reference , 1979 .

[42]  Martin Burghoff,et al.  Nuclear magnetic resonance in the nanoTesla range , 2005 .

[43]  G. Sou,et al.  Very Low Noise Multiplexing with SQUIDs and SiGe Heterojunction Bipolar Transistors for Readout of Large Superconducting Bolometer Arrays , 2008 .

[44]  M. Kiviranta Use of SiGe bipolar transistors for cryogenic readout of SQUIDs , 2006 .

[45]  R. Reed,et al.  HTS SQUID application as a quantum roulette noise thermometer , 1999, IEEE Transactions on Applied Superconductivity.

[46]  J. Flokstra,et al.  SQUID Developments for the Gravitational Wave Antenna MiniGRAIL , 2007, IEEE Transactions on Applied Superconductivity.

[47]  Robert H Kraus,et al.  Parallel MRI at microtesla fields. , 2008, Journal of magnetic resonance.

[48]  D. Cox,et al.  Focused Ion Beam NanoSQUIDs as Novel NEMS Resonator Readouts , 2009, IEEE Transactions on Applied Superconductivity.

[49]  Edward J. Wollack,et al.  A Kilopixel Array of TES Bolometers for ACT: Development, Testing, and First Light , 2008 .

[50]  P. Seidel,et al.  Planar high-temperature superconducting dc-SQUID gradiometers for different applications , 2006 .

[51]  A. McNab,et al.  Using SQUIDs to Solve Some Current Problems in Eddy Current Testing , 1995 .

[52]  A. Chwala,et al.  SQUID technology for geophysical exploration , 2005 .

[53]  G. Gierelt,et al.  Defect detection in thick aircraft samples based on HTS SQUID-magnetometry and pattern recognition , 2003 .

[54]  J. Clarke,et al.  A superconducting galvanometer employing Josephson tunnelling , 1966 .

[55]  H. Meyer,et al.  Quantum Detection Meets Archaeology – Magnetic Prospection with SQUIDs, Highly Sensitive and Fast , 2009 .

[56]  F. Gatti,et al.  The Design of a Frequency Multiplexed Ir-Au TES Array , 2008 .

[57]  M. Ladd,et al.  Low‐frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta Earthquake , 1990 .

[58]  R. Stolz,et al.  LTS SQUID sensor with a new configuration , 1999 .

[59]  M. Siegel,et al.  Standard method for detection of magnetic defects in aircraft engine discs using a HTS SQUID gradiometer , 1999, IEEE Transactions on Applied Superconductivity.

[60]  P. Schmidt,et al.  Advantages of measuring the magnetic gradient tensor , 2000 .

[61]  M. Lueker,et al.  TES Bolometer Array for the APEX-SZ Camera , 2008 .

[62]  Jens Haueisen,et al.  Simultaneous suppression of disturbing fields and localization of magnetic markers by means of multipole expansion , 2004, Biomagnetic research and technology.

[63]  Yi Zhang,et al.  Conductivity tomography for non-destructive evaluation using pulsed eddy current with HTS SQUID magnetometer , 2003 .

[64]  R. L. Fagaly,et al.  Biomagnetic susceptometer with SQUID instrumentation , 1991 .

[65]  D. Cohen,et al.  MAGNETOCARDIOGRAMS TAKEN INSIDE A SHIELDED ROOM WITH A SUPERCONDUCTING POINT‐CONTACT MAGNETOMETER , 1970 .

[66]  J. Oppenlaender,et al.  Nonperiodic flux to voltage conversion of series arrays of dc superconducting quantum interference devices , 2001 .

[67]  R. Leoni,et al.  An absolute magnetometer based on dc Superconducting QUantum Interference Devices , 1997 .

[68]  S. Keenan,et al.  HTS SQUID NDE of Curved Surfaces Using Background Field Cancellation Techniques , 2007, IEEE Transactions on Applied Superconductivity.

[69]  L. Trahms,et al.  Applications of high-temperature SQUIDs , 1995 .

[70]  Antti Ahonen,et al.  DC-SQUID electronics based on adaptive positive feedback: experiments , 1991 .

[71]  Jörn Beyer,et al.  Practical noise thermometers for low temperatures , 2009 .

[72]  F. Piquemal,et al.  SQUIDs for Standards and Metrology , 2006 .

[73]  Hans Hilgenkamp,et al.  Why NanoSQUIDs are important: an introduction to the focus issue , 2009 .

[75]  M. Lueker,et al.  Frequency-domain multiplexed readout of transition-edge sensor arrays with a superconducting quantum interference device , 2005 .

[76]  Magnetic dipole imaging by a scanning magnetic microscope , 2008 .

[77]  Peter Kleinschmidt,et al.  A cryogenic current comparator bridge for resistance measurements at currents of up to 100 A , 1999, IEEE Trans. Instrum. Meas..

[78]  Marc Kreutzbruck,et al.  Non-destructive testing of niobium sheets for superconducting resonators using an LTS SQUID system , 2002 .

[79]  M. Muck,et al.  Experiments on eddy current NDE with HTS rf SQUIDS , 1997, IEEE Transactions on Applied Superconductivity.

[80]  William J. Gallagher,et al.  High‐resolution scanning SQUID microscope , 1995 .

[81]  H. Seppä,et al.  DC-SQUID Electronics Based on Adaptive Noise Cancellation and a High Open-Loop Gain Controller , 1992 .

[82]  M. Kiviranta High Dynamic Range SQUID Readout for Frequency-Domain Multiplexers , 2008 .

[83]  I. Volkov,et al.  HTS SQUID microscopy for measuring the magnetization relaxation of magnetic nanoparticles , 2005, IEEE Transactions on Applied Superconductivity.

[84]  Alexander B. Zorin,et al.  Characterization and metrological investigation of an R-pump with driving frequencies up to 100 MHz , 2008 .

[85]  J. Haueisen,et al.  Information content in single-component versus three-component cardiomagnetic fields , 2004, IEEE Transactions on Magnetics.

[86]  D. Farrell,et al.  Liver Iron Susceptometry , 2007 .

[87]  D. L. Tilbrook,et al.  Rotating magnetic tensor gradiometry and a superconducting implementation , 2009 .

[88]  Ling Hao,et al.  HTS cryogenic current comparator for non-invasive sensing of charged particle beams , 2002, Conference Digest Conference on Precision Electromagnetic Measurements.

[89]  W. B. Doriese,et al.  Electrical and optical measurements on the first SCUBA-2 prototype 1280 pixel submillimeter superconducting bolometer array. , 2007, The Review of scientific instruments.

[90]  Alex I. Braginski,et al.  Biomagnetism using SQUIDs: status and perspectives , 2006 .

[91]  M. D. Audley,et al.  Tests of finline-coupled TES bolometers forCℓOVER , 2007, 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics.

[92]  Cathy P. Foley,et al.  Geophysical exploration using magnetic gradiometry based on HTS SQUIDs , 2001 .

[93]  Alex I. Braginski,et al.  The SQUID handbook , 2006 .

[94]  L. A. Knauss,et al.  Current Imaging using Magnetic Field Sensors , 2004 .

[95]  C. Millar,et al.  Operation of a geophysical HTS SQUID system in sub-Arctic environments , 2003 .

[96]  Cathy P. Foley,et al.  A history of the CSIRO’s development of high temperature superconducting rf SQUIDs for TEM prospecting. , 2006 .

[97]  Stéphane Gaffet,et al.  Seismo-ionosphere detection by underground SQUID in low-noise environment in LSBB-Rustrel, France , 2009 .

[98]  P. A. R. Ade,et al.  SUNYAEV–ZEL'DOVICH EFFECT OBSERVATIONS OF THE BULLET CLUSTER (1E 0657−56) WITH APEX-SZ , 2008, 0807.4208.

[99]  John Clarke,et al.  SQUID-detected magnetic resonance imaging in microtesla fields. , 2007, Annual review of biomedical engineering.

[100]  G. Hayward,et al.  SQUID GRADIOMETRIC DETECTION OF DEFECTS IN FERROMAGNETIC STRUCTURES , 1986 .

[101]  Dietmar Drung,et al.  dc Magnetoencephalography: Direct measurement in a magnetically extremely-well shielded room , 2004 .

[102]  Kent D. Irwin,et al.  Demonstration of a multiplexer of dissipationless superconducting quantum interference devices , 2008 .

[103]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[104]  Mark A. Downey,et al.  Airborne TEM surveying with a SQUID magnetometer sensor , 2002 .

[105]  P. Maas,et al.  Impact damage detection in carbon fibre composites using HTS SQUIDs and neural networks , 2004 .

[106]  U Gampe,et al.  NON DESTRUCTIVE EXAMINATION OF PRESTRESSED TENDONS BY THE MAGNETIC STRAY FIELD METHOD , 1997 .

[107]  F. Raso,et al.  Proposal of a new method of measurement of the quantized hall resistance with a Binary Josephson array in a bridge configuration , 2008, 2008 Conference on Precision Electromagnetic Measurements Digest.

[108]  P. Caputo,et al.  Superconducting quantum interference filters as absolute magnetic field sensors , 2005, IEEE Transactions on Applied Superconductivity.

[109]  Torsten May,et al.  Passive stand-off terahertz imaging with 1 hertz frame rate , 2008, SPIE Defense + Commercial Sensing.

[110]  G. Prodi,et al.  3-Mode Detection for Widening the Bandwidth of Resonant Gravitational Wave Detectors , 2005, gr-qc/0502101.