暂无分享,去创建一个
Yee Whye Teh | Hongseok Yang | Tom Rainforth | Yuan Zhou | Y. Teh | Hongseok Yang | Tom Rainforth | Yuanshuo Zhou
[1] Sean Gerrish,et al. Black Box Variational Inference , 2013, AISTATS.
[2] A. Doucet,et al. Particle Markov chain Monte Carlo methods , 2010 .
[3] Zoubin Ghahramani,et al. Turing: A Language for Flexible Probabilistic Inference , 2018 .
[4] Ohad Kammar,et al. Functional programming for modular Bayesian inference , 2018, Proc. ACM Program. Lang..
[5] Thomas B. Schön,et al. Automated learning with a probabilistic programming language: Birch , 2018, Annu. Rev. Control..
[6] Chung-Kil Hur,et al. R2: An Efficient MCMC Sampler for Probabilistic Programs , 2014, AAAI.
[7] Andrew Gelman,et al. Handbook of Markov Chain Monte Carlo , 2011 .
[8] Yee Whye Teh,et al. The Mondrian Process , 2008, NIPS.
[9] Thomas A. Henzinger,et al. Probabilistic programming , 2014, FOSE.
[10] P. Green,et al. Trans-dimensional Markov chain Monte Carlo , 2000 .
[11] Nando de Freitas,et al. An Introduction to Sequential Monte Carlo Methods , 2001, Sequential Monte Carlo Methods in Practice.
[12] Michael I. Jordan,et al. An HDP-HMM for systems with state persistence , 2008, ICML '08.
[13] Chong Wang,et al. Stochastic variational inference , 2012, J. Mach. Learn. Res..
[14] Sriram K. Rajamani,et al. Efficiently Sampling Probabilistic Programs via Program Analysis , 2013, AISTATS.
[15] David Tolpin,et al. Design and Implementation of Probabilistic Programming Language Anglican , 2016, IFL 2016.
[16] Fredrik Lindsten,et al. Interacting Particle Markov Chain Monte Carlo , 2016, ICML.
[17] John Salvatier,et al. Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..
[18] Timothy Brooks Paige. Automatic inference for higher-order probabilistic programs , 2016 .
[19] Matt J. Kusner,et al. Grammar Variational Autoencoder , 2017, ICML.
[20] V. T. Rajan,et al. Bayesian Inference in Monte-Carlo Tree Search , 2010, UAI.
[21] Yura N. Perov,et al. Venture: a higher-order probabilistic programming platform with programmable inference , 2014, ArXiv.
[22] Timon Gehr,et al. λPSI: exact inference for higher-order probabilistic programs , 2020, PLDI.
[23] Alexey Radul,et al. Time Series Structure Discovery via Probabilistic Program Synthesis , 2016 .
[24] Joshua B. Tenenbaum,et al. Church: a language for generative models , 2008, UAI.
[25] Hinrich Schütze,et al. Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.
[26] Frank D. Wood,et al. Probabilistic structure discovery in time series data , 2016, ArXiv.
[27] David Tolpin,et al. Maximum a Posteriori Estimation by Search in Probabilistic Programs , 2015, SOCS.
[28] Dustin Tran,et al. Deep Probabilistic Programming , 2017, ICLR.
[29] P. Green,et al. On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .
[30] Tom Rainforth,et al. Automating inference, learning, and design using probabilistic programming , 2017 .
[31] Pat Hanrahan,et al. Generating Efficient MCMC Kernels from Probabilistic Programs , 2014, AISTATS.
[32] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[33] Noah D. Goodman,et al. C3: Lightweight Incrementalized MCMC for Probabilistic Programs using Continuations and Callsite Caching , 2015, AISTATS.
[34] Prabhat,et al. Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model , 2018, NeurIPS.
[35] A. Rollett,et al. The Monte Carlo Method , 2004 .
[36] Noah D. Goodman,et al. Deep Amortized Inference for Probabilistic Programs , 2016, ArXiv.
[37] David Wingate,et al. Automated Variational Inference in Probabilistic Programming , 2013, ArXiv.
[38] Agostino Nobile,et al. Bayesian finite mixtures with an unknown number of components: The allocation sampler , 2007, Stat. Comput..
[39] Freda Kemp,et al. An Introduction to Sequential Monte Carlo Methods , 2003 .
[40] Jacques Carette,et al. Probabilistic Inference by Program Transformation in Hakaru (System Description) , 2016, FLOPS.
[41] David Tolpin,et al. Output-Sensitive Adaptive Metropolis-Hastings for Probabilistic Programs , 2015, ECML/PKDD.
[42] Yura N. Perov,et al. Learning Probabilistic Programs , 2014, ArXiv.
[43] Jukka Corander,et al. Layered adaptive importance sampling , 2015, Statistics and Computing.
[44] Yee Whye Teh,et al. On Exploration, Exploitation and Learning in Adaptive Importance Sampling , 2018, ArXiv.
[45] Marcus Gallagher,et al. Reversible Jump Probabilistic Programming , 2019, AISTATS.
[46] P. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .
[47] Frank D. Wood,et al. LF-PPL: A Low-Level First Order Probabilistic Programming Language for Non-Differentiable Models , 2019, AISTATS.
[48] Jiqiang Guo,et al. Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.
[49] Noah D. Goodman,et al. Pyro: Deep Universal Probabilistic Programming , 2018, J. Mach. Learn. Res..
[50] Dustin Tran,et al. Automatic Differentiation Variational Inference , 2016, J. Mach. Learn. Res..
[51] Yee Whye Teh,et al. Inference Trees: Adaptive Inference with Exploration , 2018, 1806.09550.
[52] Joshua B. Tenenbaum,et al. Structure Discovery in Nonparametric Regression through Compositional Kernel Search , 2013, ICML.
[53] Vikash K. Mansinghka,et al. Gen: a general-purpose probabilistic programming system with programmable inference , 2019, PLDI.
[54] Noah D. Goodman,et al. Lightweight Implementations of Probabilistic Programming Languages Via Transformational Compilation , 2011, AISTATS.
[55] Rémi Munos,et al. Adaptive strategy for stratified Monte Carlo sampling , 2015, J. Mach. Learn. Res..
[56] Frank D. Wood,et al. A New Approach to Probabilistic Programming Inference , 2014, AISTATS.
[57] Hongseok Yang,et al. An Introduction to Probabilistic Programming , 2018, ArXiv.
[58] Frank D. Wood,et al. Inference Compilation and Universal Probabilistic Programming , 2016, AISTATS.