Generalized hashing and parent-identifying codes

Let C be a code of length n over an alphabet of q letters. For a pair of integers 2 ≤ t > u, C is (t,u)-hashing if for any two subsets T, U ⊂C, satisfying T ⊂ U, |T| = t, |U| = u, there is a coordinate 1 ≤ i ≤ n such that for any x ∈ T, y ∈ U - x, x and y differ in the ith coordinate. This definition, generalizing the standard notion of a t-hashing family, is motivated by an application in designing the so-called parent identifying codes, used in digital fingerprinting. In this paper, we provide lower and upper bounds on the best possible rate of (t, u)-hashing families for fixed t, u and growing n. We also describe an explicit construction of (t, u)-hashing families. The obtained lower bound on the rate of (t, u)-hashing families is applied to get a new lower bound on the rate of t-parent identifying codes.

[1]  Dan Boneh,et al.  Collusion-Secure Fingerprinting for Digital Data , 1998, IEEE Trans. Inf. Theory.

[2]  Jessica Staddon,et al.  Combinatorial properties of frameproof and traceability codes , 2001, IEEE Trans. Inf. Theory.

[3]  Gérard D. Cohen,et al.  A Hypergraph Approach to the Identifying Parent Property: The Case of Multiple Parents , 2001, SIAM J. Discret. Math..

[4]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[5]  Noga Alon,et al.  Construction of asymptotically good low-rate error-correcting codes through pseudo-random graphs , 1992, IEEE Trans. Inf. Theory.

[6]  A. Nilli Perfect Hashing and Probability , 1994, Combinatorics, Probability and Computing.

[7]  Noga Alon,et al.  Parent-Identifying Codes , 2001, J. Comb. Theory, Ser. A.

[8]  Jean-Paul M. G. Linnartz,et al.  On Codes with the Identifiable Parent Property , 1998, J. Comb. Theory, Ser. A.

[9]  Simon R. Blackburn,et al.  An upper bound on the size of a code with the k-identifiable parent property , 2003, J. Comb. Theory, Ser. A.

[10]  Noga Alon,et al.  New Bounds on Parent-Identifying Codes: The Case of Multiple Parents , 2004, Combinatorics, Probability and Computing.

[11]  J. Körner Fredman-Kolmo´s bounds and information theory , 1986 .

[12]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[13]  J. Komlos,et al.  On the Size of Separating Systems and Families of Perfect Hash Functions , 1984 .

[14]  M. Tsfasman,et al.  Modular curves, Shimura curves, and Goppa codes, better than Varshamov‐Gilbert bound , 1982 .

[15]  János Körner,et al.  New Bounds for Perfect Hashing via Information Theory , 1988, Eur. J. Comb..

[16]  Michael A. Tsfasman,et al.  Modular curves and codes with a polynomial construction , 1984, IEEE Trans. Inf. Theory.

[17]  Amos Fiat,et al.  Tracing traitors , 2000, IEEE Trans. Inf. Theory.