On the energy variant of the sum-product conjecture

We prove new exponents for the energy version of the Erdős-Szemeredi sum-product conjecture, raised by Balog and Wooley. They match the previously established milestone values for the standard formulation of the question, both for general fields and the special case of real or complex numbers, and appear to be the best ones attainable within the currently available technology. Further results are obtained about multiplicative energies of additive shifts and a strengthened energy version of the "few sums, many products" inequality of Elekes and Ruzsa. The latter inequality enables us to obtain a minor improvement of the state-of the art sum-product exponent over the reals due to Konyagin and the second author, up to $\frac{4}{3}+\frac{1}{1509}$. An application of energy estimates to an instance of arithmetic growth in prime residue fields is presented.

[1]  Michael Rudnev,et al.  On the Number of Incidences Between Points and Planes in Three Dimensions , 2014, Comb..

[2]  I. Shkredov Some remarks on the Balog–Wooley decomposition theorem and quantities D+, D× , 2016, 1605.00266.

[3]  S. Konyagin,et al.  New results on sum-products in R , 2016, 1602.03473.

[4]  Ilya D. Shkredov,et al.  Difference sets are not multiplicatively closed , 2016, 1602.02360.

[5]  G. Petridis Products of Differences in Prime Order Finite Fields , 2016, 1602.02142.

[6]  Misha Rudnev,et al.  Growth Estimates in Positive Characteristic via Collisions , 2015, 1512.06613.

[7]  Tomasz Schoen,et al.  New bounds in Balog-Szemerédi-Gowers theorem , 2015, Comb..

[8]  Antal Balog,et al.  A low-energy decomposition theorem , 2015, 1510.03309.

[9]  I. D. Shkredov On sums of Szemerédi-Trotter sets , 2015 .

[10]  Ilya D. Shkredov,et al.  On sum sets of sets having small product set , 2015, 1503.05771.

[11]  Ilya D. Shkredov,et al.  Variations on the Sum-Product Problem , 2013, SIAM J. Discret. Math..

[12]  Csaba D. Tóth The Szemerédi-Trotter theorem in the complex plane , 2003, Comb..

[13]  I. Shkredov,et al.  New sum-product type estimates over finite fields , 2014, 1408.0542.

[14]  Ben Green,et al.  On Sets Defining Few Ordinary Lines , 2012, Discret. Comput. Geom..

[15]  Oliver Roche-Newton,et al.  Improved bounds on the set A(A+1) , 2012, J. Comb. Theory, Ser. A.

[16]  Misha Rudnev,et al.  On New Sum-Product-Type Estimates , 2013, SIAM J. Discret. Math..

[17]  T. Schoen,et al.  Higher moments of convolutions , 2011, 1110.2986.

[18]  József Solymosi,et al.  Bounding multiplicative energy by the sumset , 2009 .

[19]  J. Chapman,et al.  Pinned distance sets, k-simplices, Wolff’s exponent in finite fields and sum-product estimates , 2009, 0903.4218.

[20]  Jean Bourgain,et al.  Multilinear Exponential Sums in Prime Fields Under Optimal Entropy Condition on the Sources , 2009 .

[21]  Jean Bourgain,et al.  On a variant of sum-product estimates and explicit exponential sum bounds in prime fields , 2009, Mathematical Proceedings of the Cambridge Philosophical Society.

[22]  Terence Tao,et al.  Additive combinatorics , 2007, Cambridge studies in advanced mathematics.

[23]  József Solymosi,et al.  On the Number of Sums and Products , 2005 .

[24]  J. Bourgain,et al.  MORE ON THE SUM-PRODUCT PHENOMENON IN PRIME FIELDS AND ITS APPLICATIONS , 2005 .

[25]  Kevin Ford The distribution of integers with a divisor in a given interval , 2004, math/0401223.

[26]  I. Ruzsa,et al.  Few sums, many products , 2003 .

[27]  Terence Tao,et al.  A sum-product estimate in finite fields, and applications , 2003, math/0301343.

[28]  W. T. Gowers,et al.  A new proof of Szemerédi's theorem , 2001 .

[29]  Yong-Gao Chen,et al.  On sums and products of integers , 1999 .

[30]  Endre Szemerédi,et al.  Extremal problems in discrete geometry , 1983, Comb..