Integer Sinusoidal Transforms

Publisher Summary Sinusoidal transforms are transforms whose kernel elements are generated using sinusoidal functions. Sinusoidal transforms have excellent compression ability for image, thus, it have image coding as its major application. The kernel elements of sinusoidal transforms are the functions of sinusoidal functions, and so generally they are real numbers that are difficult or expensive to implement. This chapter explains the way integer sinusoidal transforms are generated and analyzes the integer cosine transform, which is probably the most important integer sinusoidal transform. It describes the two unified treatments of sinusoidal transforms proposed by Jain and Wang. Dyadic symmetry and its relation to the Walsh transform are given, whose results are used to generate integer sinusoidal transforms. As the discrete cosine transform plays a very important role in image coding, a detailed analysis of the integer cosine transform is also discussed in the chapter.

[1]  R. Clarke,et al.  Relation between the Karhunen Loève and cosine transforms , 1981 .

[2]  K. R. Rao,et al.  An approximation to the discrete cosine transform for N=16 , 1983 .

[3]  Wen-Hsiung Chen,et al.  Slant Transform Image Coding , 1974, IEEE Trans. Commun..

[4]  A. Meiri,et al.  A Pinned Sine Transform Image Coder , 1981, IEEE Trans. Commun..

[5]  A. Haar Zur Theorie der orthogonalen Funktionensysteme , 1910 .

[6]  N. M. Blachman Sinusoids versus Walsh functions , 1974 .

[7]  Anil K. Jain,et al.  Recursive Block Coding - A New Approach to Transform Coding , 1986, IEEE Transactions on Communications.

[8]  Robert M. Haralick,et al.  Comparative Study of a Discrete Linear Basis for Image Data Compression , 1974, IEEE Trans. Syst. Man Cybern..

[9]  L. Marton,et al.  Advances in Electronics and Electron Physics , 1958 .

[10]  V. R. Algazi,et al.  Slant Haar transform , 1974 .

[11]  H. Andrews,et al.  Singular Value Decomposition (SVD) Image Coding , 1976, IEEE Trans. Commun..

[12]  A.K. Jain,et al.  Advances in mathematical models for image processing , 1981, Proceedings of the IEEE.

[13]  Nasir Ahmed,et al.  On Notation and Definition of Terms Related to a Class of Complete Orthogonal Functions , 1973 .

[14]  J. Walsh A Closed Set of Normal Orthogonal Functions , 1923 .

[15]  W. K. Cham,et al.  A comparison of error behaviour in the implementation of the DCT and the ICT , 1990, IEEE TENCON'90: 1990 IEEE Region 10 Conference on Computer and Communication Systems. Conference Proceedings.

[16]  H. Enomoto,et al.  Orthogonal Transform Coding System for Television Signals , 1971 .

[17]  R. J. Clarke,et al.  Dyadic symmetry and Walsh matrices , 1987 .

[18]  A. Jain,et al.  A Fast Karhunen-Loeve Transform for a Class of Random Processes , 1976, IEEE Trans. Commun..

[19]  Yechiam Yemini,et al.  Asymptotic Properties of Discrete Unitary Transforms , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  W. D. Ray,et al.  Further decomposition of the Karhunen-Loève series representation of a stationary random process , 1970, IEEE Trans. Inf. Theory.

[21]  K. Sam Shanmugam Comments on "Discrete Cosine Transform" , 1975, IEEE Trans. Computers.

[22]  Hideo Kitajima A Symmetric Cosine Transform , 1980, IEEE Transactions on Computers.

[23]  H. Andrews,et al.  Hadamard transform image coding , 1969 .

[24]  S. N. Koh,et al.  Development of order-16 integer transforms , 1991, Signal Process..

[25]  Wen-Hsiung Chen,et al.  A Fast Computational Algorithm for the Discrete Cosine Transform , 1977, IEEE Trans. Commun..

[26]  Zhongde Wang Fast algorithms for the discrete W transform and for the discrete Fourier transform , 1984 .

[27]  J. Pearl,et al.  Comparison of the cosine and Fourier transforms of Markov-1 signals , 1976 .

[28]  K. R. Rao,et al.  BIFORE or Hadamard transform , 1971 .

[29]  Wai-Kuen Cham Development of integer cosine transforms by the principle of dyadic symmetry , 1989 .

[30]  Limin Wang,et al.  Progressive image transmission by transform coefficient residual error quantization , 1988, IEEE Trans. Commun..

[31]  Yiu-Tong Chan,et al.  An order-16 integer cosine transform , 1991, IEEE Trans. Signal Process..

[32]  W. K. Cham,et al.  Image coding using weighted cosine transform , 1990, IEEE TENCON'90: 1990 IEEE Region 10 Conference on Computer and Communication Systems. Conference Proceedings.

[33]  Wai-Kuen Cham,et al.  Integer sinusoidal transforms for image processing , 1991 .

[34]  H. B. Kekre,et al.  Modified slant and modified slant Haar transforms for image data compression , 1977 .

[35]  N. Ahmed,et al.  Sequency Theory: Foundations and Applications , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[36]  N. Ahmed,et al.  Discrete Cosine Transform , 1996 .

[37]  Henning F. Harmuth,et al.  A generalized concept of frequency and some applications , 1968, IEEE Trans. Inf. Theory.

[38]  S. C. Knauer,et al.  The Karhunen-Loeve, discrete cosine, and related transforms obtained via the Hadamard transform. [for data compression] , 1978 .

[39]  C. Smith,et al.  Adaptive Coding of Monochrome and Color Images , 1977, IEEE Trans. Commun..

[40]  Anil K. Jain,et al.  A Sinusoidal Family of Unitary Transforms , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  G. Robinson,et al.  Logical convolution and discrete Walsh and Fourier power spectra , 1972 .

[42]  R. Srinivasan,et al.  C -matrix transform , 1983 .