Concurrent Wi-Fi for mobile users: analysis and measurements

We present the first in-depth analysis of the performance of attempting concurrent AP connections from highly mobile clients. Previous solutions for concurrent Wi-Fi are limited to stationary wireless clients and do not take into account a myriad of mobile factors. Through an analytical model, optimization framework, and numerous outdoor experiments, we show that connection duration, AP response times, channel scheduling, available and offered bandwidth, node speed, and dhcp joins all affect performance. Building on these results, we design, implement, and evaluate a system, Spider, that establishes and maintains concurrent connections to 802.11 APs in a mobile environment. The system uses multi-AP selection, channel-based scheduling, and opportunistic scanning to maximize throughput while mitigating the overhead of association and dhcp. While Spider can manage multiple channels, we empirically demonstrate that it achieves maximum throughput when using multiple APs on a single channel. Our evaluation shows that Spider provides a 400% improvement in throughput and 54% improvement in connectivity over stock Wi-Fi implementations.

[1]  Haiyun Luo,et al.  Flow Scheduling for End-Host Multihoming , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[2]  Victor C. M. Leung,et al.  A wireless local area network employing distributed radio bridges , 1996, Wirel. Networks.

[3]  Kemal Fidanboylu,et al.  An Overview of Handoff Techniques in Cellular Networks , 2005 .

[4]  Andrew J. Viterbi,et al.  Soft Handoff Extends CDMA Cell Coverage and Increase Reverse Link Capacity , 1994, Mobile Communications.

[5]  Yang Zhang,et al.  CarTel: a distributed mobile sensor computing system , 2006, SenSys '06.

[6]  Hari Balakrishnan,et al.  Divert: fine-grained path selection for wireless LANs , 2004, MobiSys '04.

[7]  Brian D. Noble,et al.  Juggler: Virtual Networks for Fun and Profit , 2010, IEEE Transactions on Mobile Computing.

[8]  Hari Balakrishnan,et al.  Improving loss resilience with multi-radio diversity in wireless networks , 2005, MobiCom '05.

[9]  Paramvir Bahl,et al.  MultiNet: connecting to multiple IEEE 802.11 networks using a single wireless card , 2004, IEEE INFOCOM 2004.

[10]  Pablo Rodriguez,et al.  MAR: a commuter router infrastructure for the mobile Internet , 2004, MobiSys '04.

[11]  Arun Venkataramani,et al.  Augmenting mobile 3G using WiFi , 2010, MobiSys '10.

[12]  Hari Balakrishnan,et al.  Cabernet: vehicular content delivery using WiFi , 2008, MobiCom '08.

[13]  Hari Balakrishnan,et al.  A measurement study of vehicular internet access using in situ Wi-Fi networks , 2006, MobiCom '06.

[14]  Samir Ranjan Das,et al.  Predictive methods for improved vehicular WiFi access , 2009, MobiSys '09.

[15]  Srikanth Kandula,et al.  FatVAP: Aggregating AP Backhaul Capacity to Maximize Throughput , 2008, NSDI.

[16]  Peter Steenkiste,et al.  Fixing 802.11 access point selection , 2002, CCRV.

[17]  Brian Neil Levine,et al.  Spider: improving mobile networking with concurrent wi-fi connections , 2011, SIGCOMM 2011.

[18]  Pablo Rodriguez,et al.  WiSwitcher: an efficient client for managing multiple APs , 2009, PRESTO '09.

[19]  Brian D. Noble,et al.  BreadCrumbs: forecasting mobile connectivity , 2008, MobiCom '08.

[20]  Mike Y. Chen,et al.  Improved access point selection , 2006, MobiSys '06.

[21]  E. Zehavi,et al.  Soft handoff extends CDMA cell coverage and increases reverse link capacity , 1994, IEEE J. Sel. Areas Commun..

[22]  John V. Guttag,et al.  Horde: separating network striping policy from mechanism , 2005, MobiSys '05.

[23]  Arun Venkataramani,et al.  Interactive wifi connectivity for moving vehicles , 2008, SIGCOMM '08.

[24]  Andreas Timm-Giel,et al.  MobiSteer: using steerable beam directional antenna for vehicular network access , 2007, MobiSys '07.