HEAT STORAGE BY PHASE CHANGING MATERIALS AND THERMOECONOMICS

[1]  M. Farid,et al.  Thermal Performance of a Heat Storage Module Using PCM’s With Different Melting Temperature: Experimental , 1990 .

[2]  I. Dincer,et al.  Exergy methods for assessing and comparing thermal storage systems , 2003 .

[3]  A. Sari,et al.  Lauric and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications , 2005 .

[4]  M. Farid,et al.  Thermal Performance of a Heat Storage Module Using PCM’s With Different Melting Temperatures: Mathematical Modeling , 1989 .

[5]  R. Krane,et al.  A Second Law analysis of the optimum design and operation of thermal energy storage systems , 1987 .

[6]  Richard Turton,et al.  Analysis, Synthesis and Design of Chemical Processes , 2002 .

[7]  New PCMs Prepared from Erythritol-Polyalcohols Mixtures for Latent Heat Storage between 80 and 100°C , 2004 .

[8]  Chong-fang Ma,et al.  Experimental study of the characteristics of solidification of stearic acid in an annulus and its thermal conductivity enhancement , 2005 .

[9]  Yaşar Demirel,et al.  Thermal performance study of a solar air heater with packed flow passage , 1987 .

[10]  B. Hua,et al.  Energy Optimization Through Exergy-Economic Evaluation , 1989 .

[11]  George Tsatsaronis,et al.  Thermoeconomic analysis and optimization of energy systems , 1993 .

[12]  William D'haeseleer,et al.  Comparison of heat storage systems employing sensible and latent heat , 1999 .

[13]  Terumi Inagaki,et al.  Study on the efficiency of effective thermal conductivities on melting characteristics of latent heat storage capsules , 2005 .

[14]  Antonio Valero,et al.  Application of the exergetic cost theory to the CGAM problem , 1994 .

[15]  Adrian Bejan,et al.  THERMODYNAMICS OF PHASE-CHANGE ENERGY STORAGE : THE EFFECTS OF LIQUID SUPERHEATING DURING MELTING, AND IRREVERSIBILITY DURING SOLIDIFICATION , 1991 .

[16]  Adrian Bejan,et al.  Thermodynamic Optimization of Phase-Change Energy Storage Using Two or More Materials , 1992 .

[17]  George A. Adebiyi,et al.  A Second-Law Study on Packed Bed Energy Storage Systems Utilizing Phase-Change Materials , 1991 .

[18]  Kamil Kaygusuz,et al.  Renewable energy potential and utilization in Turkey. , 2003 .

[19]  Stanislaw Sieniutycz,et al.  Nonequilibrium Thermodynamics: Transport and Rate Processes in Physical and Biological Systems , 2003, Open Syst. Inf. Dyn..

[20]  Amos Zemel,et al.  Thermodynamic analysis of latent heat storage in a shell-and-tube heat exchanger , 1992 .

[21]  Luisa F. Cabeza,et al.  Long term immersion corrosion tests on metal‐PCM pairs used for latent heat storage in the 24 to 29°C temperature range , 2005 .

[22]  K. Ramesh,et al.  Exergy analysis of latent heat storage systems with sensible heating and subcooling of PCM , 1998 .

[23]  Andrea Lazzaretto,et al.  On the Thermoeconomic Approach to the Diagnosis of Energy System Malfuntions. Part-2 Malfunction Definitions and Assessment. , 2004 .

[25]  Hajime Nakamura,et al.  Optimum Efficiencies and Phase Change Temperatures in Latent Heat Storage Systems , 1994 .

[26]  Andrea Lazzaretto,et al.  On the Thermoeconomic Approach to the Diagnosis of Energy System Malfuntions. Part-1 The TADEUS Problem , 2002 .

[27]  Xu Xu,et al.  Experimental study of under-floor electric heating system with shape-stabilized PCM plates , 2005 .

[28]  Ephraim Gutmark,et al.  Planar Imaging of Vortex Dynamics in Flames , 1989 .

[29]  Bo Carlsson,et al.  An exergy analysis of sensible and latent heat storage , 1985 .

[30]  H. Öztürk Experimental evaluation of energy and exergy efficiency of a seasonal latent heat storage system for greenhouse heating , 2005 .

[31]  A. Bejan Advanced Engineering Thermodynamics , 1988 .

[32]  Yaşar Demirel Chapter 7 – Thermoeconomics , 2002 .

[33]  Enrico Sciubba,et al.  Cost analysis of energy conversion systems via a novel resource-based quantifier , 2003 .

[34]  Antonio Valero,et al.  Structural theory as standard for thermoeconomics , 1999 .

[35]  A. Faghri,et al.  Performance characteristics of a thermal energy storage module - A transient PCM/forced convection conjugate analysis , 1991 .

[36]  B. K. Hodge,et al.  Computer Simulation of a High-Temperature Thermal Energy Storage System Employing Multiple Families of Phase-Change Storage Materials , 1996 .

[37]  Q. L. Chen,et al.  A new exergoeconomic approach for analysis and optimization of energy systems , 1997 .

[38]  H. Öztürk,et al.  Exergy‐based performance analysis of packed‐bed solar air heaters , 2004 .

[39]  Roman Domański,et al.  Thermoeconomic analysis of sensible heat, thermal energy storage systems , 1998 .

[40]  H. Paksoy,et al.  Thermal analysis of heat storage materials , 1993 .

[41]  José María Sala,et al.  Application of thermoeconomics to the allocation of environmental loads in the life cycle assessment of cogeneration plants , 2003 .

[42]  Robert U. Ayres,et al.  Eco-thermodynamics: economics and the second law , 1998 .

[43]  Wasim Saman,et al.  Thermal performance of PCM thermal storage unit for a roof integrated solar heating system , 2005 .

[44]  Zhaolin Gu,et al.  Thermal energy recovery of air conditioning system¿¿heat recovery system calculation and phase change materials development , 2004 .

[45]  H. Öztürk,et al.  Energetic and exergetic efficiency of latent heat storage system for greenhouse heating , 1999 .

[46]  Bahri Sahin,et al.  Optimization of thermal systems based on finite-time thermodynamics and thermoeconomics , 2004 .

[47]  Christos A. Frangopoulos,et al.  A method for taking into account environmental impacts in the economic evaluation of energy systems , 1997 .