Semi-automatic generation of transfer functions for direct volume rendering

Although direct volume rendering is a powerful tool for visualizing complex structures within volume data, the size and complexity of the parameter space controlling the rendering process makes generating an informative rendering challenging. In particular, the specification of the transfer function-the mapping from data values to renderable optical properties-is frequently a time consuming and unintuitive task. Ideally, the data being visualized should itself suggest an appropriate transfer function that brings out the features of interest without obscuring them with elements of little importance. We demonstrate that this is possible for a large class of scalar volume data, namely that where the regions of interest are the boundaries between different materials. A transfer function which makes boundaries readily visible can be generated from the relationship between three quantities: the data value and its first and second directional derivatives along the gradient direction. A data structure we term the histogram volume captures the relationship between these quantities throughout the volume in a position independent, computationally efficient fashion. We describe the theoretical importance of the quantities measured by the histogram volume, the implementation issues in its calculation, and a method for semiautomatic transfer function generation through its analysis. We conclude with results of the method on both idealized synthetic data as well as real world datasets.

[1]  Pat Hanrahan,et al.  Volume Rendering , 2020, Definitions.

[2]  Pat Hanrahan,et al.  Volume rendering , 1998 .

[3]  W. Eric L. Grimson,et al.  Adaptive Segmentation of MRI Data , 1995, CVRMed.

[4]  Thomas Frühauf,et al.  Raycasting vector fields , 1996, VIS '96.

[5]  O. Faugeras Three-dimensional computer vision: a geometric viewpoint , 1993 .

[6]  M. Levoy,et al.  Fast volume rendering using a shear-warp factorization of the viewing transformation , 1994, SIGGRAPH.

[7]  J. Frank Electron Tomography , 1992, Springer US.

[8]  Charles D. Hansen,et al.  Isosurfacing in span space with utmost efficiency (ISSUE) , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[9]  Granino A. Korn,et al.  Mathematical handbook for scientists and engineers , 1961 .

[10]  Klaus Mueller,et al.  A comparison of normal estimation schemes , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[11]  David S. Ebert,et al.  Grouping Volume Renderers for Enhanced Visualization in Computational Fluid Dynamics , 1995, IEEE Trans. Vis. Comput. Graph..

[12]  Lee Westover,et al.  Footprint evaluation for volume rendering , 1990, SIGGRAPH.

[13]  Xiaoyang Mao,et al.  Splatting of Non Rectilinear Volumes Through Stochastic Resampling , 1996, IEEE Trans. Vis. Comput. Graph..

[14]  Shigeru Muraki,et al.  Multiscale Volume Representation by a DoG Wavelet , 1995, IEEE Trans. Vis. Comput. Graph..

[15]  Allen Van Gelder,et al.  Direct volume rendering with shading via three-dimensional textures , 1996, Proceedings of 1996 Symposium on Volume Visualization.

[16]  Klaus Mueller,et al.  Classification and local error estimation of interpolation and derivative filters for volume rendering , 1996, Proceedings of 1996 Symposium on Volume Visualization.

[17]  John K. Ousterhout,et al.  Tcl and the Tk Toolkit , 1994 .

[18]  David H. Laidlaw,et al.  Geometric model extraction from magnetic resonance volume data , 1996 .

[19]  Paul A. Beardsley,et al.  Design galleries: a general approach to setting parameters for computer graphics and animation , 1997, SIGGRAPH.

[20]  Thomas Malzbender,et al.  Frequency Analysis of Gradient Estimators in Volume Rendering , 1996, IEEE Trans. Vis. Comput. Graph..

[21]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[22]  Barthold Lichtenbelt,et al.  Introduction to volume rendering , 1998 .

[23]  Kevin L. Novins,et al.  Towards Accurate and Efficient Volume Rendering , 1993 .

[24]  Koji Koyamada,et al.  Volume thinning for automatic isosurface propagation , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[25]  Donald P. Greenberg,et al.  Implementing a Collaboratory for Microscopic Digital Anatomy , 1996, Int. J. High Perform. Comput. Appl..

[26]  K. L. Moore,et al.  Clinically Oriented Anatomy , 1985 .

[27]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  G. Nielson,et al.  Generation of Transfer Functions with Stochastic Search Techniques The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters , 1998 .

[29]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[30]  Cynthia Furse,et al.  Electrical energy absorption in the human head from a cellular telephone , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[31]  Hans-Peter Bunge,et al.  Mantle Convection Visualization on the Cray T3D , 1996, IEEE Visualization.

[32]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[33]  Hanspeter Pfister,et al.  Generation of transfer functions with stochastic search techniques , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[34]  J. Frank,et al.  Alignment by Cross-Correlation , 1992 .

[35]  Valerio Pascucci,et al.  The contour spectrum , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[36]  Bernice E. Rogowitz,et al.  A rule-based tool for assisting colormap selection , 1995, Proceedings Visualization '95.

[37]  Azriel Rosenfeld,et al.  Image Segmentation by Pixel Classification in (Gray Level, Edge Value) Space , 1978, IEEE Transactions on Computers.

[38]  Nelson L. Max,et al.  Optical Models for Direct Volume Rendering , 1995, IEEE Trans. Vis. Comput. Graph..

[39]  Josef Kittler,et al.  A survey of the hough transform , 1988, Comput. Vis. Graph. Image Process..