Developing Niching Algorithms in Particle Swarm Optimization

Niching as an important technique for multimodal optimization has been used widely in the Evolutionary Computation research community. This chapter aims to provide a survey of some recent efforts in developing state-of-the-art PSO niching algorithms. The chapter first discusses some common issues and difficulties faced when using niching methods, then describe several existing PSO niching algorithms and how they combat these problems by taking advantages of the unique characteristics of PSO. This chapter will also describe a recently proposed lbest ring topology based niching PSO. Our experimental results suggest that this lbest niching PSO compares favourably against some existing PSO niching algorithms.

[1]  Frans van den Bergh,et al.  A NICHING PARTICLE SWARM OPTIMIZER , 2002 .

[2]  Zbigniew Michalewicz,et al.  Evolutionary Computation 1 , 2018 .

[3]  Xiaodong Li,et al.  Particle Swarms for Dynamic Optimization Problems , 2008, Swarm Intelligence.

[4]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[5]  Xiaodong Li,et al.  This article has been accepted for inclusion in a future issue. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1 Locating and Tracking Multiple Dynamic Optima by a Particle Swarm Model Using Speciation , 2022 .

[6]  Ralph R. Martin,et al.  A Sequential Niche Technique for Multimodal Function Optimization , 1993, Evolutionary Computation.

[7]  Kalyanmoy Deb,et al.  Massive Multimodality, Deception, and Genetic Algorithms , 1992, PPSN.

[8]  Georges R. Harik,et al.  Finding Multimodal Solutions Using Restricted Tournament Selection , 1995, ICGA.

[9]  R. Brits,et al.  Solving systems of unconstrained equations using particle swarm optimization , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[10]  Alain Pétrowski,et al.  A clearing procedure as a niching method for genetic algorithms , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[11]  Michael N. Vrahatis,et al.  On the computation of all global minimizers through particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[12]  Riccardo Poli,et al.  Genetic and Evolutionary Computation – GECCO 2004 , 2004, Lecture Notes in Computer Science.

[13]  Samir W. Mahfoud Crowding and Preselection Revisited , 1992, PPSN.

[14]  Xiaodong Li,et al.  Adaptively choosing niching parameters in a PSO , 2006, GECCO.

[15]  Rolf Drechsler,et al.  Applications of Evolutionary Computing, EvoWorkshops 2008: EvoCOMNET, EvoFIN, EvoHOT, EvoIASP, EvoMUSART, EvoNUM, EvoSTOC, and EvoTransLog, Naples, Italy, March 26-28, 2008. Proceedings , 2008, EvoWorkshops.

[16]  Xiaodong Li,et al.  Using regression to improve local convergence , 2007, 2007 IEEE Congress on Evolutionary Computation.

[17]  Patrick Siarry,et al.  Island Model Cooperating with Speciation for Multimodal Optimization , 2000, PPSN.

[18]  Christian Blum,et al.  Swarm Intelligence: Introduction and Applications , 2008, Swarm Intelligence.

[19]  Xiaodong Yin,et al.  A Fast Genetic Algorithm with Sharing Scheme Using Cluster Analysis Methods in Multimodal Function Optimization , 1993 .

[20]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[21]  Isabella Lodewina Schoeman,et al.  Niching in particle swarm optimization , 2010 .

[22]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[23]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[24]  S Bird Adaptive techniques for enhancing the robustness and performance of speciated PSOs in multimodal environments , 2008 .

[25]  François E. Cellier,et al.  Artificial Neural Networks and Genetic Algorithms , 1991 .

[26]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[27]  J. Kennedy,et al.  Population structure and particle swarm performance , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[28]  A. Engelbrecht,et al.  Using vector operations to identify niches for particle swarm optimization , 2004, IEEE Conference on Cybernetics and Intelligent Systems, 2004..

[29]  Xiaodong Li,et al.  Niching Without Niching Parameters: Particle Swarm Optimization Using a Ring Topology , 2010, IEEE Transactions on Evolutionary Computation.

[30]  Samir W. Mahfoud Niching methods for genetic algorithms , 1996 .

[31]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[32]  Xin Yao,et al.  Parallel Problem Solving from Nature PPSN VI , 2000, Lecture Notes in Computer Science.

[33]  Andries P. Engelbrecht,et al.  A Parallel Vector-Based Particle Swarm Optimizer , 2005 .

[34]  Jürgen Branke,et al.  Multi-swarm Optimization in Dynamic Environments , 2004, EvoWorkshops.

[35]  Xiaodong Li,et al.  Adaptively Choosing Neighbourhood Bests Using Species in a Particle Swarm Optimizer for Multimodal Function Optimization , 2004, GECCO.

[36]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[37]  Michael N. Vrahatis,et al.  Modification of the Particle Swarm Optimizer for Locating All the Global Minima , 2001 .

[38]  J. Kennedy,et al.  Stereotyping: improving particle swarm performance with cluster analysis , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[39]  Antonina Starita,et al.  Particle swarm optimization for multimodal functions: a clustering approach , 2008 .

[40]  Xiaodong Li,et al.  Enhancing the robustness of a speciation-based PSO , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[41]  Xiaodong Li,et al.  A Generator for Multimodal Test Functions with Multiple Global Optima , 2008, SEAL.

[42]  P. John Clarkson,et al.  A Species Conserving Genetic Algorithm for Multimodal Function Optimization , 2002, Evolutionary Computation.