A Geometric Approach to Maximum Likelihood Estimation of the Functional Principal Components From Sparse Longitudinal Data

In this article, we consider the problem of estimating the eigenvalues and eigenfunctions of the covariance kernel (i.e., the functional principal components) from sparse and irregularly observed longitudinal data. We exploit the smoothness of the eigenfunctions to reduce dimensionality by restricting them to a lower dimensional space of smooth functions. We then approach this problem through a restricted maximum likelihood method. The estimation scheme is based on a Newton–Raphson procedure on the Stiefel manifold using the fact that the basis coefficient matrix for representing the eigenfunctions has orthonormal columns. We also address the selection of the number of basis functions, as well as that of the dimension of the covariance kernel by a second-order approximation to the leave-one-curve-out cross-validation score that is computationally very efficient. The effectiveness of our procedure is demonstrated by simulation studies and an application to a CD4+ counts dataset. In the simulation studies, our method performs well on both estimation and model selection. It also outperforms two existing approaches: one based on a local polynomial smoothing, and another using an EM algorithm. Supplementary materials including technical details, the R package fpca, and data analyzed by this article are available online.

[1]  Hervé Cardot,et al.  Conditional Functional Principal Components Analysis , 2007 .

[2]  M. Kirkpatrick,et al.  Restricted maximum likelihood estimation of genetic principal components and smoothed covariance matrices , 2005, Genetics Selection Evolution.

[3]  Jie Peng,et al.  Principal components analysis for sparsely observed correlated functional data using a kernel smoothing approach , 2008, 0807.1106.

[4]  Prabir Burman,et al.  Estimation of generalized additive models , 1990 .

[5]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[6]  Debashis Paul,et al.  CONSISTENCY OF RESTRICTED MAXIMUM LIKELIHOOD ESTIMATORS OF PRINCIPAL COMPONENTS , 2008, 0805.0465.

[7]  Jianqing Fan,et al.  Two‐step estimation of functional linear models with applications to longitudinal data , 1999 .

[8]  John M. Lee Riemannian Manifolds: An Introduction to Curvature , 1997 .

[9]  James Stephen Marron,et al.  Discussion of nonparametric and semiparametric regression , 2004 .

[10]  H. V. Trees,et al.  Covariance, Subspace, and Intrinsic CramrRao Bounds , 2007 .

[11]  R. M. Dudley,et al.  Real Analysis and Probability , 1989 .

[12]  D. Paul Nonparametric estimation of principal components , 2005 .

[13]  J. Phair,et al.  The Multicenter AIDS Cohort Study: rationale, organization, and selected characteristics of the participants. , 1987, American journal of epidemiology.

[14]  Jane-ling Wang,et al.  Functional linear regression analysis for longitudinal data , 2005, math/0603132.

[15]  S.T. Smith,et al.  Covariance, subspace, and intrinsic Crame/spl acute/r-Rao bounds , 2005, IEEE Transactions on Signal Processing.

[16]  Colin O. Wu,et al.  Nonparametric Mixed Effects Models for Unequally Sampled Noisy Curves , 2001, Biometrics.

[17]  P. Diggle,et al.  Analysis of Longitudinal Data , 2003 .

[18]  H. Cardot Nonparametric estimation of smoothed principal components analysis of sampled noisy functions , 2000 .

[19]  Catherine A. Sugar,et al.  Principal component models for sparse functional data , 1999 .

[20]  R. Ash,et al.  Real analysis and probability , 1975 .

[21]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[22]  M. Stone An Asymptotic Equivalence of Choice of Model by Cross‐Validation and Akaike's Criterion , 1977 .

[23]  Joel L. Horowitz,et al.  Methodology and convergence rates for functional linear regression , 2007, 0708.0466.

[24]  C. Micchelli,et al.  On multivariate -splines , 1989 .

[25]  P. Hall,et al.  Properties of principal component methods for functional and longitudinal data analysis , 2006, math/0608022.

[26]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[27]  Lixing Zhu,et al.  Asymptotics for sliced average variance estimation , 2007, 0708.0462.

[28]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[29]  P. Sarda,et al.  Functional linear model , 1999 .

[30]  H. Müller,et al.  Functional Data Analysis for Sparse Longitudinal Data , 2005 .

[31]  M. Greenwood Nonparametric Functional Data Analysis: Theory and Practice , 2007 .

[32]  G. Wahba A Comparison of GCV and GML for Choosing the Smoothing Parameter in the Generalized Spline Smoothing Problem , 1985 .

[33]  B. Silverman,et al.  Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .

[34]  Jean-Pierre Dussault Convergence of Implementable Descent Algorithms for Unconstrained Optimization , 2000 .

[35]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[36]  Chin-Tsang Chiang,et al.  KERNEL SMOOTHING ON VARYING COEFFICIENT MODELS WITH LONGITUDINAL DEPENDENT VARIABLE , 2000 .

[37]  Z. Q. John Lu,et al.  Nonparametric Functional Data Analysis: Theory And Practice , 2007, Technometrics.

[38]  R. Fraiman,et al.  Kernel-based functional principal components ( , 2000 .

[39]  Tapabrata Maiti,et al.  Analysis of Longitudinal Data (2nd ed.) (Book) , 2004 .

[40]  Philippe Besse,et al.  Simultaneous non-parametric regressions of unbalanced longitudinal data , 1997 .

[41]  B. Silverman,et al.  Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .

[42]  T. Tony Cai,et al.  Prediction in functional linear regression , 2006 .

[43]  P. Burman A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods , 1989 .