A Geometric Approach to Maximum Likelihood Estimation of the Functional Principal Components From Sparse Longitudinal Data
暂无分享,去创建一个
Jie Peng | Debashis Paul | D. Paul | Jie Peng
[1] Hervé Cardot,et al. Conditional Functional Principal Components Analysis , 2007 .
[2] M. Kirkpatrick,et al. Restricted maximum likelihood estimation of genetic principal components and smoothed covariance matrices , 2005, Genetics Selection Evolution.
[3] Jie Peng,et al. Principal components analysis for sparsely observed correlated functional data using a kernel smoothing approach , 2008, 0807.1106.
[4] Prabir Burman,et al. Estimation of generalized additive models , 1990 .
[5] Alan Edelman,et al. The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..
[6] Debashis Paul,et al. CONSISTENCY OF RESTRICTED MAXIMUM LIKELIHOOD ESTIMATORS OF PRINCIPAL COMPONENTS , 2008, 0805.0465.
[7] Jianqing Fan,et al. Two‐step estimation of functional linear models with applications to longitudinal data , 1999 .
[8] John M. Lee. Riemannian Manifolds: An Introduction to Curvature , 1997 .
[9] James Stephen Marron,et al. Discussion of nonparametric and semiparametric regression , 2004 .
[10] H. V. Trees,et al. Covariance, Subspace, and Intrinsic CramrRao Bounds , 2007 .
[11] R. M. Dudley,et al. Real Analysis and Probability , 1989 .
[12] D. Paul. Nonparametric estimation of principal components , 2005 .
[13] J. Phair,et al. The Multicenter AIDS Cohort Study: rationale, organization, and selected characteristics of the participants. , 1987, American journal of epidemiology.
[14] Jane-ling Wang,et al. Functional linear regression analysis for longitudinal data , 2005, math/0603132.
[15] S.T. Smith,et al. Covariance, subspace, and intrinsic Crame/spl acute/r-Rao bounds , 2005, IEEE Transactions on Signal Processing.
[16] Colin O. Wu,et al. Nonparametric Mixed Effects Models for Unequally Sampled Noisy Curves , 2001, Biometrics.
[17] P. Diggle,et al. Analysis of Longitudinal Data , 2003 .
[18] H. Cardot. Nonparametric estimation of smoothed principal components analysis of sampled noisy functions , 2000 .
[19] Catherine A. Sugar,et al. Principal component models for sparse functional data , 1999 .
[20] R. Ash,et al. Real analysis and probability , 1975 .
[21] R. Muirhead. Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.
[22] M. Stone. An Asymptotic Equivalence of Choice of Model by Cross‐Validation and Akaike's Criterion , 1977 .
[23] Joel L. Horowitz,et al. Methodology and convergence rates for functional linear regression , 2007, 0708.0466.
[24] C. Micchelli,et al. On multivariate -splines , 1989 .
[25] P. Hall,et al. Properties of principal component methods for functional and longitudinal data analysis , 2006, math/0608022.
[26] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[27] Lixing Zhu,et al. Asymptotics for sliced average variance estimation , 2007, 0708.0462.
[28] Gene H. Golub,et al. Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.
[29] P. Sarda,et al. Functional linear model , 1999 .
[30] H. Müller,et al. Functional Data Analysis for Sparse Longitudinal Data , 2005 .
[31] M. Greenwood. Nonparametric Functional Data Analysis: Theory and Practice , 2007 .
[32] G. Wahba. A Comparison of GCV and GML for Choosing the Smoothing Parameter in the Generalized Spline Smoothing Problem , 1985 .
[33] B. Silverman,et al. Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .
[34] Jean-Pierre Dussault. Convergence of Implementable Descent Algorithms for Unconstrained Optimization , 2000 .
[35] C. R. Deboor,et al. A practical guide to splines , 1978 .
[36] Chin-Tsang Chiang,et al. KERNEL SMOOTHING ON VARYING COEFFICIENT MODELS WITH LONGITUDINAL DEPENDENT VARIABLE , 2000 .
[37] Z. Q. John Lu,et al. Nonparametric Functional Data Analysis: Theory And Practice , 2007, Technometrics.
[38] R. Fraiman,et al. Kernel-based functional principal components ( , 2000 .
[39] Tapabrata Maiti,et al. Analysis of Longitudinal Data (2nd ed.) (Book) , 2004 .
[40] Philippe Besse,et al. Simultaneous non-parametric regressions of unbalanced longitudinal data , 1997 .
[41] B. Silverman,et al. Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .
[42] T. Tony Cai,et al. Prediction in functional linear regression , 2006 .
[43] P. Burman. A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods , 1989 .