Ground-based and UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology

[1]  Claude H. Birdseye Stereoscopic Phototopographic Mapping , 1940 .

[2]  A. J. Eardley Aerial Photographs Their Use and Interpretation , 1942 .

[3]  Stereoscopic Projection for Demonstration in Geology, Geomorphology, and Other Natural Sciences , 1950, The Journal of Geology.

[4]  Application of high-order stereoscopic plotting instruments to photogeologic studies , 1957 .

[5]  K. Burns,et al.  Silurian and Devonian systems , 1962 .

[6]  D. Groves,et al.  Structural features and mode of emplacement of part of the blue tier batholith in Northeast Tasmania , 1971 .

[7]  A. Beach,et al.  The geometry of en-echelon vein arrays , 1975 .

[8]  T. O. Hagan A case for terrestrial photogrammetry in deep-mine rock structure studies , 1980 .

[9]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[10]  Jon E. Olson,et al.  The initiation and growth of en échelon veins , 1991 .

[11]  A. Aydin,et al.  Nucleation and growth of strike-slip faults in limestones from Somerset, U.K. , 1997 .

[12]  A. Aydin,et al.  The relationship between faults and pressure solution seams in carbonate rocks and the implications for fluid flow , 1998, Geological Society, London, Special Publications.

[13]  Z. Shipton,et al.  Damage zone and slip-surface evolution over μm to km scales in high-porosity Navajo sandstone, Utah , 2001 .

[14]  O. Stephansson,et al.  Measuring fracture orientation at exposed rock faces by using a non-reflector total station , 2001 .

[15]  Kenneth W. Hudnut,et al.  High-Resolution Topography along Surface Rupture of the 16 October 1999 Hector Mine, California, Earthquake (Mw 7.1) from Airborne Laser Swath Mapping , 2002 .

[16]  Robert E. Kayen,et al.  Landslides and liquefaction triggered by the M 7.9 denali fault earthquake of 3 November 2002 , 2003 .

[17]  David J. Harding,et al.  High-resolution lidar topography of the Puget Lowland, Washington - A bonanza for earth science , 2003 .

[18]  D. P. Schwartz,et al.  Surface Rupture and Slip Distribution of the Denali and Totschunda Faults in the 3 November 2002 M 7.9 Earthquake, Alaska , 2004 .

[19]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[20]  Pietro Perona,et al.  Evaluation of Features Detectors and Descriptors based on 3D Objects , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[21]  Charles K. Toth,et al.  The B4 Project: Scanning the San Andreas and San Jacinto Fault Zones , 2005 .

[22]  I. Trinks,et al.  Unlocking the spatial dimension: digital technologies and the future of geoscience fieldwork , 2005, Journal of the Geological Society.

[23]  O. Fernández,et al.  Obtaining a best fitting plane through 3D georeferenced data , 2005 .

[24]  S. I. Granshaw,et al.  BUNDLE ADJUSTMENT METHODS IN ENGINEERING PHOTOGRAMMETRY , 2006 .

[25]  Steven M. Seitz,et al.  Photo tourism: exploring photo collections in 3D , 2006, ACM Trans. Graph..

[26]  Jamie K. Pringle,et al.  Virtual outcrop models of petroleum reservoir analogues: a review of the current state-of-the-art , 2006 .

[27]  Richard Szeliski,et al.  Modeling the World from Internet Photo Collections , 2008, International Journal of Computer Vision.

[28]  M. Oskin,et al.  Quantifying fault‐zone activity in arid environments with high‐resolution topography , 2007 .

[29]  J. Coggan,et al.  Comparison of Hand-mapping With Remote Data Capture Systems For Effective Rock Mass Characterisation , 2007 .

[30]  M. Antonellini,et al.  Failure modes in deep-water carbonates and their impact for fault development: Majella Mountain, Central Apennines, Italy , 2008 .

[31]  Roberto Cipolla,et al.  Structure from motion , 2008 .

[32]  Steven M. Seitz,et al.  Finding paths through the world's photos , 2008, SIGGRAPH 2008.

[33]  Olaf Zielke,et al.  Tectonic geomorphology of the San Andreas Fault zone from high resolution topography: an example from the Cholame segment , 2009 .

[34]  David Hodgetts,et al.  Applications of digital outcrop models: two fluvial case studies from the Triassic Wolfville Fm., Canada and Oukaimeden Sandstone Fm., Morocco , 2009 .

[35]  Jim H. Chandler,et al.  High spatial resolution data acquisition for the geosciences: kite aerial photography , 2009 .

[36]  Andrea Fusiello,et al.  Structure-and-motion pipeline on a hierarchical cluster tree , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[37]  R. Gawthorpe,et al.  Geometry and architecture of faults in a syn-rift normal fault array: the Nukhul half-graben, Suez rift, Egypt , 2009 .

[38]  George E. Hilley,et al.  Morphologic dating of fault scarps using airborne laser swath mapping (ALSM) data , 2010 .

[39]  Jean Ponce,et al.  Accurate, Dense, and Robust Multiview Stereopsis , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  L. G. Ludwig,et al.  Century-long average time intervals between earthquake ruptures of the San Andreas fault in the Carrizo Plain, California , 2010 .

[41]  Richard Szeliski,et al.  Towards Internet-scale multi-view stereo , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[42]  Olaf Zielke,et al.  Slip in the 1857 and Earlier Large Earthquakes Along the Carrizo Plain, San Andreas Fault , 2010, Science.

[43]  D. Sanderson,et al.  Deformation within a strike-slip fault network at Westward Ho!, Devon U.K.: Domino vs conjugate faulting , 2011 .

[44]  E. Monsen,et al.  Fractures in Carbonates: From Digital Outcrops to Mechanical Models , 2011 .

[45]  Steven J. Whitmeyer,et al.  Geological and geophysical modeling on virtual globes using KML, COLLADA, and Javascript , 2011, Comput. Geosci..

[46]  J. Chandler,et al.  Minimising systematic error surfaces in digital elevation models using oblique convergent imagery , 2011 .

[47]  育久 満上,et al.  Bundler: Structure from Motion for Unordered Image Collections , 2011 .

[48]  S. Akciz,et al.  Applications of airborne and terrestrial laser scanning to paleoseismology , 2012 .

[49]  Arko Lucieer,et al.  An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds , 2012, Remote. Sens..

[50]  E. Gomez‐Rivas,et al.  A review of the formation of tectonic veins and their microstructures , 2012 .

[51]  Arko Lucieer,et al.  Mapping from an Armchair: Rapid, high-Resolution Mapping using uAV and Computer Vision Technology , 2012 .

[52]  Thomas G. Blenkinsop,et al.  Visualizing structural geology: From Excel to Google Earth , 2012, Comput. Geosci..

[53]  M. Favalli,et al.  Multiview 3D reconstruction in geosciences , 2012, Comput. Geosci..

[54]  S. Robson,et al.  Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application , 2012 .

[55]  Srikanth Saripalli,et al.  3D change detection using low cost aerial imagery , 2012, 2012 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR).

[56]  J. Travelletti,et al.  UAV-based remote sensing of the Super-Sauze landslide : evaluation and results. , 2012 .

[57]  Adrian A. Borsa,et al.  Rapid Determination of Near‐Fault Earthquake Deformation Using Differential LiDAR , 2012 .

[58]  M. Westoby,et al.  ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications , 2012 .

[59]  Eric J. Fielding,et al.  Near-Field Deformation from the El Mayor–Cucapah Earthquake Revealed by Differential LIDAR , 2012, Science.

[60]  R. Gawthorpe,et al.  LiDAR-based digital outcrops for sedimentological analysis: workflows and techniques , 2013 .

[61]  Srikanth Saripalli,et al.  Three‐dimensional surface displacements and rotations from differencing pre‐ and post‐earthquake LiDAR point clouds , 2012 .

[62]  O. Kreylos,et al.  A terrestrial lidar-based workflow for determining three-dimensional slip vectors and associated uncertainties , 2012 .

[63]  Peter Kovesi,et al.  A Geological Structure Mapping Tool using Photogrammetric Data , 2013 .

[64]  Sebastien Leprince,et al.  Fault kinematics and surface deformation across a releasing bend during the 2010 MW 7.1 Darfield, New Zealand, earthquake revealed by differential LiDAR and cadastral surveying , 2013 .

[65]  J. Malet,et al.  Image-based mapping of surface fissures for the investigation of landslide dynamics , 2013 .

[66]  David Hodgetts,et al.  Laser scanning and digital outcrop geology in the petroleum industry: A review , 2013 .

[67]  Mark A. Fonstad,et al.  Topographic structure from motion: a new development in photogrammetric measurement , 2013 .

[68]  T. Seers,et al.  Comparison of digital outcrop and conventional data collection approaches for the characterization of naturally fractured reservoir analogues , 2013 .

[69]  Arko Lucieer,et al.  Direct Georeferencing of Ultrahigh-Resolution UAV Imagery , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[70]  Srikanth Saripalli,et al.  Rapid mapping of ultrafine fault zone topography with structure from motion , 2014 .

[71]  J. Dolan,et al.  How well do surface slip measurements track slip at depth in large strike-slip earthquakes? The importance of fault structural maturity in controlling on-fault slip versus off-fault surface deformation , 2014 .

[72]  Peter Kovesi,et al.  Semi-automatic mapping of geological Structures using UAV-based photogrammetric data: An image analysis approach , 2014, Comput. Geosci..

[73]  S. Robson,et al.  Mitigating systematic error in topographic models derived from UAV and ground‐based image networks , 2014 .