Criteria for Yielding or Failure of Cellular Materials

Sandwich structures are used extensively in marine structures and other applications. Cellular materials such as foams, honeycomb, and balsa wood used as core materials in sandwich structures are subjected to multiaxial loadings. Concentrated loads, impacts, and explosions can result in large deformations and damage, and yield or failure criteria are needed to predict the end of the elastic phase. Yielding or failure of isotropic foams is generally dependent on the hydrostatic stress, a feature that these materials share with many polymers, concrete, and soils. Appropriate criteria which are different from those traditionally used for metals have been classified in four major categories. Similarities between seemingly different criteria and between foams and other materials are brought out. Foams can also be anisotropic as honeycomb and balsa wood, and the anisotropy has to be accounted for in addition to the differences in strength in tension and compression in various directions. Suitable anisotropic criteria are shown to be the extensions of criteria previously used for isotropic materials and methods to present these criteria in a unified manner or to systematically extend isotropic criteria are discussed. Finally the strain rate effects and size effects are discussed.

[1]  Y. Takiguchi,et al.  Strain rate sensitivity and energy absorption of Zn–22Al foams , 2006 .

[2]  Zhenyu Xue,et al.  Crush dynamics of square honeycomb sandwich cores , 2006 .

[3]  Vikram Deshpande,et al.  A constitutive model for transversely isotropic foams, and its application to the indentation of balsa wood , 2005 .

[4]  Lin Seng Ong,et al.  Triaxial compression of aluminium foams , 2007 .

[5]  Zhenyu Xue,et al.  Constitutive model for quasi‐static deformation of metallic sandwich cores , 2004 .

[6]  Panayiotis Papadopoulos,et al.  The modified super-ellipsoid yield criterion for human trabecular bone. , 2004, Journal of biomechanical engineering.

[7]  J. M. Alegre,et al.  A Gurson–Tvergaard based model to simulate the fracture of aged duplex stainless steels , 2004 .

[8]  Yield criteria for porous ductile sheet metals with planar anisotropy under plane stress conditions , 2004 .

[9]  D. Frew,et al.  Dynamic Compressive Response and Failure Behavior of an Epoxy Syntactic Foam , 2004 .

[10]  Dirk Mohr,et al.  Experimental Investigation on the Plasticity of Hexagonal Aluminum Honeycomb Under Multiaxial Loading , 2004 .

[11]  O. Hopperstad,et al.  Aluminum foam-filled extrusions subjected to oblique loading: experimental and numerical study , 2004 .

[12]  Y. Bréchet,et al.  Microplastic yield condition for a periodic stacking of hollow spheres , 2004 .

[13]  D. Benderly,et al.  Characterization of the shear/compression failure envelope of Rohacell foam , 2004 .

[14]  Fabrizio Scarpa,et al.  Dynamic properties of high structural integrity auxetic open cell foam , 2004 .

[15]  D. M. Moses,et al.  Stress and failure analysis of wood composites: a new model , 2004 .

[16]  O. Hopperstad,et al.  Constitutive modeling of aluminum foam including fracture and statistical variation of density , 2003 .

[17]  A. Öchsner,et al.  On an elastic-plastic transition zone in cellular metals , 2003 .

[18]  T. Wierzbicki,et al.  Experimental studies on the yield behavior of ductile and brittle aluminum foams , 2003 .

[19]  H. A. Mang,et al.  A multi-surface plasticity model for clear wood and its application to the finite element analysis of structural details , 2003 .

[20]  U. Ramamurty,et al.  Effect of displacement-rate on the indentation behavior of an aluminum foam , 2003 .

[21]  Shinill Kang,et al.  Development of experimental method to characterize pressure-dependent yield criteria for polymeric foams , 2003 .

[22]  Holger Steeb,et al.  The size effect in foams and its theoretical and numerical investigation , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[23]  Fabrizio Scarpa,et al.  Dynamic crushing of auxetic open-cell polyurethane foam , 2002 .

[24]  Glen L Niebur,et al.  Biaxial failure behavior of bovine tibial trabecular bone. , 2002, Journal of biomechanical engineering.

[25]  Frank Lam,et al.  A stochastic plasticity approach to strength modeling of strand-based wood composites , 2002 .

[26]  Elias Siores,et al.  Compressive behaviour of aluminium foams at low and medium strain rates , 2002 .

[27]  Norman A. Fleck,et al.  Size effects in the constrained deformation of metallic foams , 2002 .

[28]  D. C. Freeman,et al.  Failure criteria for isotropic materials, applications to low-density types , 2002 .

[29]  E. Gdoutos,et al.  Failure of cellular foams under multiaxial loading , 2002 .

[30]  I. Carol,et al.  Study of the Behavior of Concrete under Triaxial Compression , 2002 .

[31]  S. Nutt,et al.  Strain rate sensitivity and defects in steel foam , 2002 .

[32]  Zhiye Zhao,et al.  Failure Criterion of Concrete under Triaxial Stresses Using Neural Networks , 2002 .

[33]  Frédéric Barlat,et al.  Generalization of Drucker's Yield Criterion to Orthotropy , 2001 .

[34]  Emmanuel E. Gdoutos,et al.  Multiaxial Characterization and Modeling of a PVC Cellular Foam , 2001 .

[35]  M. Ashby,et al.  Effective properties of the octet-truss lattice material , 2001 .

[36]  G. Niebur,et al.  Biomechanics of trabecular bone. , 2001, Annual review of biomedical engineering.

[37]  Vikram Deshpande,et al.  Multi-axial yield behaviour of polymer foams , 2001 .

[38]  T. Lu,et al.  Characterization of close-celled cellular aluminum alloys , 2001 .

[39]  Yang-Ping Yao,et al.  Application of Lade's Criterion to Cam-Clay Model , 2001 .

[40]  Alberto Corigliano,et al.  Mechanical behavior of a syntactic foam: experiments and modeling , 2000 .

[41]  Patrick Ienny,et al.  Mechanical properties and non-homogeneous deformation of open-cell nickel foams: application of the mechanics of cellular solids and of porous materials , 2000 .

[42]  N. Fleck,et al.  Isotropic constitutive models for metallic foams , 2000 .

[43]  Lorna J. Gibson,et al.  Failure of aluminum foams under multiaxial loads , 2000 .

[44]  J. Lee,et al.  Yield Functions and Flow Rules for Porous Pressure-Dependent Strain-Hardening Polymeric Materials , 2000 .

[45]  U. Ramamurty,et al.  Strain rate sensitivity of a closed-cell aluminum foam , 2000 .

[46]  Ronald E. Miller A continuum plasticity model for the constitutive and indentation behaviour of foamed metals , 2000 .

[47]  N. Fleck,et al.  High strain rate compressive behaviour of aluminium alloy foams , 2000 .

[48]  Antoinette M. Maniatty,et al.  Anisotropic yield criterion for polycrystalline metals using texture and crystal symmetries , 1999 .

[49]  T M Keaveny,et al.  A cellular solid criterion for predicting the axial-shear failure properties of bovine trabecular bone. , 1999, Journal of biomechanical engineering.

[50]  Frank W. Zok,et al.  The mechanical response of ceramic microballoon reinforced aluminum matrix composites under compressive loading , 1999 .

[51]  Y P Arramon,et al.  Application of the Tsai-Wu quadratic multiaxial failure criterion to bovine trabecular bone. , 1999, Journal of biomechanical engineering.

[52]  Noboru Kikuchi,et al.  Constitutive modeling of polymeric foam material subjected to dynamic crash loading , 1998 .

[53]  F. Barlat,et al.  Yield function development for aluminum alloy sheets , 1997 .

[54]  Noboru Kikuchi,et al.  Constitutive Modeling and Material Characterization of Polymeric Foams , 1997 .

[55]  Yonggang Huang,et al.  On the asymmetric yield surface of plastically orthotropic materials: A phenomenological study , 1997 .

[56]  M. Rink,et al.  Yield criteria for amorphous glassy polymers , 1997 .

[57]  H. Schreyer,et al.  Mechanical properties of polyurethane-foam impact limiters , 1995 .

[58]  Kaspar Willam,et al.  Fracture Energy Formulation for Inelastic Behavior of Plain Concrete , 1994 .

[59]  A. P. Karafillis,et al.  A general anisotropic yield criterion using bounds and a transformation weighting tensor , 1993 .

[60]  James A. Sherwood,et al.  Constitutive modeling and simulation of energy absorbing polyurethane foam under impact loading , 1992 .

[61]  R. Hill Constitutive modelling of orthotropic plasticity in sheet metals , 1990 .

[62]  Michael F. Ashby,et al.  Failure surfaces for cellular materials under multiaxial loads—I.Modelling , 1989 .

[63]  J. H. Lee,et al.  Some Exact and Approximate Solutions for the Modified von Mises Yield Criterion , 1988 .

[64]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[65]  R. Caddell,et al.  Influence of hydrostatic pressure on the yield strength of anisotropic polycarbonate , 1981 .

[66]  R. Hill Theoretical plasticity of textured aggregates , 1979, Mathematical Proceedings of the Cambridge Philosophical Society.

[67]  K. Pae The macroscopic yielding behaviour of polymers in multiaxial stress fields , 1977 .

[68]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[69]  R. S. Raghava,et al.  Yield locus studies of oriented polycarbonate An anisotropic and pressure-dependent solid , 1974 .

[70]  Andrew Nagy,et al.  Mechanical Behavior of Foamed Materials Under Dynamic Compression , 1974 .

[71]  R. S. Raghava,et al.  A yield criterion for anisotropic and pressure dependent solids such as oriented polymers , 1973 .

[72]  R. S. Raghava,et al.  The macroscopic yield behaviour of polymers , 1973 .

[73]  W. Hosford A Generalized Isotropic Yield Criterion , 1972 .

[74]  D. W. Hobbs,et al.  STRENGTH OF CONCRETE UNDER COMBINED STRESS , 1971 .

[75]  E. Meinecke,et al.  Energy absorption in polymeric foams. I. Prediction of impact behavior from instron data for foams with rate-independent modulus , 1970 .

[76]  J. A. Deruntz,et al.  The Static Strength of Syntactic Foams , 1969 .

[77]  A. Mendelson Plasticity: Theory and Application , 1968 .

[78]  D. C. Drucker,et al.  Soil mechanics and plastic analysis or limit design , 1952 .

[79]  R. Hill The mathematical theory of plasticity , 1950 .

[80]  R. Hill A theory of the yielding and plastic flow of anisotropic metals , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[81]  Percy Williams Bridgman,et al.  The Effect of Hydrostatic Pressure on the Fracture of Brittle Substances , 1947 .

[82]  E. Hayden STUDY OF THE EARTHQUAKE. , 1886, Science.