High optical feedback tolerance of InAs/GaAs quantum dot lasers on germanium.

This work experimentally investigates the optical feedback sensitivity of InAs/GaAs quantum dot (Qdot) lasers epitaxially grown on Ge substrate. In comparison with a Qdot laser on GaAs substrate with identical epilayer and cavity structures, the Ge-based laser is found to exhibit lower sensitivity to the optical feedback, although it has a higher epitaxial defect density. Theoretical analysis proves that the high defect density strongly increases the damping factor while slightly reduces the linewidth broadening factor, which lead to high tolerance to the optical feedback. This work suggests the high potential of Qdot lasers on Ge for isolator-free operation in photonic integrated circuits.

[1]  F. Grillot,et al.  Modulation Properties of Self-Injected Quantum-Dot Semiconductor Diode Lasers , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  Low temperature photoluminescence study of thin epitaxial GaAs films on Ge substrates , 2006, cond-mat/0703661.

[3]  David T. D. Childs,et al.  Structural analysis of life tested 1.3 μm quantum dot lasers , 2008 .

[4]  Karin Hinzer,et al.  Quantum dot semiconductor lasers with optical feedback , 2004 .

[5]  Y. Arakawa,et al.  First Demonstration of Athermal Silicon Optical Interposers With Quantum Dot Lasers Operating up to 125 °C , 2015, Journal of Lightwave Technology.

[6]  K. Petermann,et al.  A simple analytic expression for the stable operation range of laser diodes with optical feedback , 1990 .

[7]  John E. Bowers,et al.  Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si , 2018 .

[8]  Luke F. Lester,et al.  Variation of the feedback sensitivity in a 1.55 μm InAs/InP quantum-dash Fabry–Perot semiconductor laser , 2008 .

[9]  Jiangbing Du,et al.  Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge , 2017 .

[10]  F. Grillot,et al.  Impacts of Wetting Layer and Excited State on the Modulation Response of Quantum-Dot Lasers , 2012, IEEE Journal of Quantum Electronics.

[11]  Yasuhiko Arakawa,et al.  High-Temperature 1.3 µm InAs/GaAs Quantum Dot Lasers on Si Substrates Fabricated by Wafer Bonding , 2013 .

[12]  A. Ramdane,et al.  Optical Feedback Tolerance of Quantum-Dot- and Quantum-Dash-Based Semiconductor Lasers Operating at 1.55 $\mu$m , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[13]  J. Bowers,et al.  Hybrid Silicon Laser Technology: A Thermal Perspective , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[14]  Daisuke Inoue,et al.  Directly modulated 1.3 μm quantum dot lasers epitaxially grown on silicon. , 2018, Optics express.

[15]  John E. Bowers,et al.  Perspective: The future of quantum dot photonic integrated circuits , 2018 .

[16]  Wei Li,et al.  Electrically pumped continuous-wave III–V quantum dot lasers on silicon , 2016, Nature Photonics.

[17]  Richard Beanland,et al.  In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates. , 2016, Optics express.

[18]  M. Hopkinson,et al.  Correlation between defect density and current leakage in InAs∕GaAs quantum dot-in-well structures , 2009 .

[19]  M. Osiński,et al.  Phase-amplitude coupling characteristics in directly modulated quantum dot lasers , 2014 .

[20]  Klaus Petermann,et al.  Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback , 1988 .

[21]  Chennupati Jagadish,et al.  Modeling and characterization of InAs/GaAs quantum dot lasers grown using metal organic chemical vapor deposition , 2007 .

[22]  J. Gerard,et al.  Structural study of InAs quantum boxes grown by molecular beam epitaxy on a (001) GaAs-on-Si substrate , 1997 .

[23]  M. S. Skolnick,et al.  Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure , 2003 .

[24]  Sze-Chun Chan,et al.  Contribution of off-resonant states to the phase noise of quantum dot lasers. , 2016, Optics express.

[25]  John E. Bowers,et al.  Electrically pumped continuous wave 1.3 µm quantum dot lasers epitaxially grown on on-axis (001) Si , 2016, 2016 International Semiconductor Laser Conference (ISLC).

[26]  Di Liang,et al.  Recent progress in lasers on silicon , 2010 .

[27]  Dong Hun Kim,et al.  On-chip optical isolation in monolithically integrated non-reciprocal optical resonators , 2011 .

[28]  Salah M. Bedair,et al.  Defect reduction in GaAs epitaxial layers using a GaAsP‐InGaAs strained‐layer superlattice , 1985 .

[29]  Jesper Mørk,et al.  Nonlinear injection locking dynamics and the onset of coherence collapse in external cavity lasers , 1990 .

[30]  G. D. Cormack,et al.  Mode selection and stability of a semiconductor laser with weak optical feedback , 1989 .

[31]  Richard A. Hogg,et al.  Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate , 2011 .

[32]  B Kelleher,et al.  Coherence collapse and low-frequency fluctuations in quantum-dash based lasers emitting at 1.57 mum. , 2007, Optics express.

[33]  John E. Bowers,et al.  High performance continuous wave 1.3 μm quantum dot lasers on silicon , 2014 .

[34]  Guillaume Huyet,et al.  Sensitivity of quantum-dot semiconductor lasers to optical feedback , 2004 .

[35]  Tin Komljenovic,et al.  Reflection sensitivity of 1.3 μm quantum dot lasers epitaxially grown on silicon. , 2017, Optics express.

[36]  E. Schöll,et al.  Influencing modulation properties of quantum-dot semiconductor lasers by carrier lifetime engineering , 2012 .

[37]  M Laemmlin,et al.  Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser. , 2007, Optics express.