Ergodicity of Age Structure in Populations with Markovian Vital Rates, I: Countable States

Abstract This paper establishes new ergodic theorems for population age structure. Let A 1, A 2, … be denumerable Leslie matrices, and for l = 1,2, m(l)(0) be age structures (vectors with elements mi (l)(0)), satisfying the assumptions of the Coale-Lopez theorem. Let {A(t, ωl)}∞ t − 1 be sample paths of a discrete-time Markov chain with sample space {A k }∞ k − 1, and m(l)(t) = A(t, ωl)A(t − 1, ωl) … A(1, ωl)m(l)(0). Then for b = 1, 2, … (weak stochastic ergodicity) lim t→∞ (E(mi (1)(t)/mi (1)(t)) b − E(mi (2)(t)/mi (2)(t)) b ) = 0 if the chain is finite and weakly ergodic (see [4]) or denumerable and weakly ergodic (see [13]). The limit holds and (strong stochastic ergodicity) {m(l)(t)}∞ t − 1 converge in distribution, if the chain is homogeneous, aperiodic, positive recurrent, and uniformly geometrically ergodic.

[1]  J. Cohen Ergodicity of age structure in populations with Markovian vital rates. II. General states , 1977, Advances in Applied Probability.

[2]  J. Hajnal,et al.  On products of non-negative matrices , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  D. Griffeath A maximal coupling for Markov chains , 1975 .

[4]  E B Keeler,et al.  Convergence of the age structure: applications of the projective metric. , 1975, Theoretical population biology.

[5]  J. Pitman Uniform rates of convergence for Markov chain transition probabilities , 1974 .

[6]  L. Demetrius Multiplicative processes-II , 1974 .

[7]  W. Brass,et al.  Perspectives in Population Prediction: Illustrated by the Statistics of England and Wales , 1974 .

[8]  H. L. Bras Populations stables aléatoires , 1974 .

[9]  J. H Pollard,et al.  Mathematical Models for the Growth of Human Populations , 1973 .

[10]  Persistence of variances for stochastic, discrete-time, population growth models. , 1972, Theoretical population biology.

[11]  Walter L. Smith,et al.  Branching processes in Markovian environments , 1971 .

[12]  Samuel Karlin,et al.  Branching Processes with Random Environments, II: Limit Theorems , 1971 .

[13]  Samuel Karlin,et al.  On Branching Processes with Random Environments: I: Extinction Probabilities , 1971 .

[14]  H. L. Bras Éléments pour une théorie des populations instables , 1971, Population.

[15]  Azaria Paz,et al.  Introduction to Probabilistic Automata , 1971 .

[16]  P. Billingsley,et al.  Convergence of Probability Measures , 1970, The Mathematical Gazette.

[17]  Yukio Takahashi Markov chains with random transition matrices , 1969 .

[18]  R. A. Doney Introduction to Measure and Probability , 1967 .

[19]  Patrick Billingsley,et al.  Uniformity in weak convergence , 1967 .

[20]  J. H. Pollard,et al.  On the use of the direct matrix product in analysing certain stochastic population models , 1966 .

[21]  L. J. Reed,et al.  Problems in Stable Population Theory , 1962 .

[22]  D. Vere-Jones GEOMETRIC ERGODICITY IN DENUMERABLE MARKOV CHAINS , 1962 .

[23]  H. Furstenberg,et al.  Products of Random Matrices , 1960 .

[24]  M. Bartlett,et al.  Weak ergodicity in non-homogeneous Markov chains , 1958, Mathematical Proceedings of the Cambridge Philosophical Society.

[25]  M. S. Bartlett,et al.  The ergodic properties of non-homogeneous finite Markov chains , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[26]  R. Dobrushin Central Limit Theorem for Nonstationary Markov Chains. II , 1956 .

[27]  Paul A. Samuelson,et al.  Balanced Growth under Constant Returns to Scale , 1953 .