Derivation of geostrophic equations as a rigorous limit of compressible rotating and heat conducting fluids with the general initial data

We investigate a distinguished low Mach and Rossby - high Reynolds and Peclet number singular limit in the complete Navier-Stokes-Fourier system towards a strong solution of a geostrophic system of equations. The limit is effectuated in the context of weak solutions with ill prepared initial data. The main tool in the proof is based on the relative energy method.

[1]  Young-Sam Kwon,et al.  Multiscale Analysis in the Compressible Rotating and Heat Conducting Fluids , 2018 .

[2]  F. Fanelli A Singular Limit Problem for Rotating Capillary Fluids with Variable Rotation Axis , 2015, 1504.02903.

[3]  F. Fanelli Highly rotating viscous compressible fluids in presence of capillarity effects , 2014, 1410.8777.

[4]  E. Feireisl,et al.  Rotating compressible fluids under strong stratification , 2014 .

[5]  E. Feireisl,et al.  Inviscid Incompressible Limits Under Mild Stratification: A Rigorous Derivation of the Euler–Boussinesq System , 2013, 1307.6030.

[6]  Antonín Novotný,et al.  Navier-Stokes-Fourier System on Unbounded Domains: Weak Solutions, Relative Entropies, Weak-Strong Uniqueness , 2013, SIAM J. Math. Anal..

[7]  E. Feireisl,et al.  Multiple Scales and Singular Limits for Compressible Rotating Fluids with General Initial Data , 2013, 1303.3998.

[8]  E. Feireisl,et al.  Scale interactions in compressible rotating fluids , 2013, 1302.0176.

[9]  E. Feireisl,et al.  Inviscid Incompressible Limits of the Full Navier-Stokes-Fourier System , 2012, 1205.6452.

[10]  E. Feireisl Low Mach Number Limits of Compressible Rotating Fluids , 2012 .

[11]  E. Feireisl,et al.  Weak–Strong Uniqueness Property for the Full Navier–Stokes–Fourier System , 2011, 1111.4256.

[12]  E. Feireisl,et al.  Relative Entropies, Suitable Weak Solutions, and Weak-Strong Uniqueness for the Compressible Navier–Stokes System , 2011, 1111.3082.

[13]  Gung-Min Gie,et al.  Boundary layer analysis of the Navier–Stokes equations with generalized Navier boundary conditions , 2011, 1105.2324.

[14]  D. Gérard-Varet,et al.  Multi-scale Analysis of Compressible Viscous and Rotating Fluids , 2011, Communications in Mathematical Physics.

[15]  Nader Masmoudi,et al.  Uniform Regularity for the Navier–Stokes Equation with Navier Boundary Condition , 2010, 1008.1678.

[16]  E. Feireisl,et al.  Singular Limits in Thermodynamics of Viscous Fluids , 2009 .

[17]  Pierre Germain,et al.  Weak–Strong Uniqueness for the Isentropic Compressible Navier–Stokes System , 2008, 0807.2797.

[18]  E. Feireisl,et al.  The Low Mach Number Limit for the Full Navier–Stokes–Fourier System , 2007 .

[19]  L. Saint-Raymond,et al.  Mathematical study of the betaplane model: Equatorial waves and convergence results , 2006, math/0604050.

[20]  S. Schochet THE MATHEMATICAL THEORY OF LOW MACH NUMBER FLOWS , 2005 .

[21]  D. Bresch,et al.  Rotating fluids in a cylinder , 2004 .

[22]  L. Saint-Raymond,et al.  Weak convergence results for inhomogeneous rotating fluid equations , 2003, math/0302103.

[23]  R. Temam,et al.  Boundary Layers Associated with Incompressible Navier–Stokes Equations: The Noncharacteristic Boundary Case , 2002 .

[24]  Alex Mahalov,et al.  3D Navier-Stokes and Euler equations with initial data characterized by uniformly large vorticity , 2001 .

[25]  N. Masmoudi Incompressible, inviscid limit of the compressible Navier-Stokes system , 2001 .

[26]  Rupert Klein,et al.  Asymptotic Analyses for Atmospheric Flows and the Construction of Asymptotically Adaptive Numerical Methods , 2000 .

[27]  Alex Mahalov,et al.  Global regularity of 3D rotating Navier-Stokes equations for resonant domains , 1999, Appl. Math. Lett..

[28]  Andro Mikelić,et al.  On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions , 1998 .

[29]  Nader Masmoudi,et al.  The Euler Limit of the Navier‐Stokes Equations, and Rotating Fluids with Boundary , 1998 .

[30]  P. Lions,et al.  Incompressible limit for a viscous compressible fluid , 1998 .

[31]  Russel E. Caflisch,et al.  Zero Viscosity Limit for Analytic Solutions of the Navier-Stokes Equation on a Half-Space.¶ II. Construction of the Navier-Stokes Solution , 1998 .

[32]  D. Durran Is the Coriolis Force Really Responsible for the Inertial Oscillation , 1993 .

[33]  Tosio Kato,et al.  Nonlinear evolution equations and the Euler flow , 1984 .

[34]  A. Majda,et al.  Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit , 1981 .

[35]  H. Swann The convergence with vanishing viscosity of nonstationary Navier-Stokes flow to ideal flow in ₃ , 1971 .

[36]  Franck Sueur,et al.  Viscous boundary layers for the Navier–Stokes equations with the Navier slip conditions , 2011 .

[37]  Rupert Klein,et al.  Scale-Dependent Models for Atmospheric Flows , 2010 .

[38]  Nader Masmoudi,et al.  Chapter 3 Examples of singular limits in hydrodynamics , 2007 .

[39]  I. Gallagher Résultats récents sur la limite incompressible , 2005 .

[40]  Russel E. Caflisch,et al.  Zero Viscosity Limit for Analytic Solutions, of the Navier-Stokes Equation on a Half-Space.¶I. Existence for Euler and Prandtl Equations , 1998 .

[41]  Roger Temam,et al.  On the behavior of the solutions of the Navier-Stokes equations at vanishing viscosity , 1997 .

[42]  Tosio Kato,et al.  Remarks on Zero Viscosity Limit for Nonstationary Navier- Stokes Flows with Boundary , 1984 .

[43]  D. Ebin The motion of slightly compressible fluids viewed as a motion with strong constraining force , 1977 .

[44]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.