Triangulating topological spaces

Given a subspace<inline-equation><f><blkbd>X⊆R</blkbd><sup>d</sup></f></inline-equation> and a finite set <inline-equation><f>S⊆<blkbd>R</blkbd><sup>d</sup></f></inline-equation>, we introduce the Delaunay simplicial complex, <inline-equation><f><sc>D</sc><inf><blkbd>X</blkbd></inf></f></inline-equation>, restricted by <inline-equation><f><blkbd>X</blkbd></f></inline-equation>. Its simplices are spanned by subsets<inline-equation><f>T⊆S</f></inline-equation> for which the common intersection of Voronoi cells meets <inline-equation><f><blkbd>X</blkbd></f></inline-equation> in a non-empty set. By the nerve theorem,<inline-equation><f><lim align="c"><op>⋃</op></lim><sc>D</sc><inf><blkbd>X</blkbd></inf></f></inline-equation> and <inline-equation><f><blkbd>X</blkbd></f></inline-equation> are homotopy equivalent if all such sets are contractible. This paper shows that <inline-equation><f><lim align="c"><op>⋃</op></lim><sc>D</sc><inf><blkbd>X</blkbd></inf></f></inline-equation> and <inline-equation><f><blkbd>X</blkbd></f></inline-equation> <?Pub Caret1>are homeomorphic if the sets can be further subdivided in a certain way so they form a regular CW complex.

[1]  James R. Munkres,et al.  Topology; a first course , 1974 .

[2]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[3]  Stephen Weingram,et al.  The Topology of CW Complexes , 1969 .

[4]  L. Paul Chew,et al.  Guaranteed-quality mesh generation for curved surfaces , 1993, SCG '93.

[5]  Loring W. Tu,et al.  Differential forms in algebraic topology , 1982, Graduate texts in mathematics.

[6]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[7]  Erik Brisson,et al.  Representing geometric structures ind dimensions: Topology and order , 1993, Discret. Comput. Geom..

[8]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[9]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[10]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[11]  C. Rourke,et al.  Introduction to Piecewise-Linear Topology , 1972 .

[12]  Erik Brisson,et al.  Representing geometric structures in d dimensions: topology and order , 1989, SCG '89.

[13]  Herbert Edelsbrunner,et al.  The union of balls and its dual shape , 1993, SCG '93.

[14]  Larry Smarr,et al.  Supercomputing and the transformation of science , 1993 .

[15]  勉 斎藤,et al.  D. Vandenberg : Being and Education, An Essay in Existential Phenomenology.(Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1971) , 1974 .