Spectrum Translation for Cross-Spectral Ocular Matching

Cross-spectral verification remains a big issue in biometrics, especially for the ocular area due to differences in the reflected features in the images depending on the region and spectrum used. In this paper, we investigate the use of Conditional Adversarial Networks for spectrum translation between near infra-red and visual light images for ocular biometrics. We analyze the transformation based on the overall visual quality of the transformed images and the accuracy drop of the identification system when trained with opposing data. We use the PolyU database and propose two different systems for biometric verification, the first one based on Siamese Networks trained with Softmax and Cross-Entropy loss, and the second one a Triplet Loss network. We achieved an EER of 1\% when using a Triplet Loss network trained for NIR and finding the Euclidean distance between the real NIR images and the fake ones translated from the visible spectrum. We also outperform previous results using baseline algorithms.

[1]  S. S. Behera,et al.  Cross-spectral Periocular Recognition: A Survey , 2018, ArXiv.

[2]  Hugo Proença,et al.  Deep Representations for Cross-spectral Ocular Biometrics , 2019, IET Biom..

[3]  Gregory R. Koch,et al.  Siamese Neural Networks for One-Shot Image Recognition , 2015 .

[4]  Nir Ailon,et al.  Deep Metric Learning Using Triplet Network , 2014, SIMBAD.

[5]  David Zhang,et al.  Two-stage image denoising by principal component analysis with local pixel grouping , 2010, Pattern Recognit..

[6]  Andreas Uhl,et al.  Design Decisions for an Iris Recognition SDK , 2016 .

[7]  Dexin Zhang,et al.  DCT-Based Iris Recognition , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Andreas Uhl,et al.  Context-based biometric key generation for Iris , 2011 .

[9]  Fernando Alonso-Fernandez,et al.  Comparison and fusion of multiple iris and periocular matchers using near-infrared and visible images , 2015, 3rd International Workshop on Biometrics and Forensics (IWBF 2015).

[10]  Luiz Eduardo Soares de Oliveira,et al.  The Impact of Preprocessing on Deep Representations for Iris Recognition on Unconstrained Environments , 2018, 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI).

[11]  Fernando Alonso-Fernandez,et al.  A survey on periocular biometrics research , 2016, Pattern Recognit. Lett..

[12]  Zhenzhong Chen,et al.  Thermal to Visible Facial Image Translation Using Generative Adversarial Networks , 2018, IEEE Signal Processing Letters.

[13]  Julian Fierrez,et al.  Dealing with sensor interoperability in multi-biometrics: the UPM experience at the Biosecure Multimodal Evaluation 2007 , 2008, SPIE Defense + Commercial Sensing.

[14]  Simon Osindero,et al.  Conditional Generative Adversarial Nets , 2014, ArXiv.

[15]  Ioannis Rigas,et al.  Biometric identification based on the eye movements and graph matching techniques , 2012, Pattern Recognit. Lett..

[16]  Yuxiao Hu,et al.  MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition , 2016, ECCV.

[17]  Kyoil Chung,et al.  A Novel and Efficient Feature Extraction Method for Iris Recognition , 2007 .

[18]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Andrew Zisserman,et al.  Representing shape with a spatial pyramid kernel , 2007, CIVR '07.

[20]  Ajay Kumar,et al.  Toward More Accurate Iris Recognition Using Cross-Spectral Matching , 2017, IEEE Transactions on Image Processing.

[21]  Yihong Gong,et al.  Deep Metric Learning with Improved Triplet Loss for Face Clustering in Videos , 2016, PCM.

[22]  Arun Ross,et al.  Matching Thermal to Visible Face Images Using a Semantic-Guided Generative Adversarial Network , 2019, 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019).

[23]  Kiran B. Raja,et al.  Cross-Eyed - Cross-Spectral Iris/Periocular Recognition Database and Competition , 2016, 2016 International Conference of the Biometrics Special Interest Group (BIOSIG).

[24]  Andreas Uhl,et al.  Secure Iris Recognition Based on Local Intensity Variations , 2010, ICIAR.

[25]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[26]  Edward J. Delp,et al.  A New Human Identification Method: Sclera Recognition , 2012, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[27]  John Daugman,et al.  How iris recognition works , 2002, IEEE Transactions on Circuits and Systems for Video Technology.

[28]  Ajita Rattani,et al.  Ocular biometrics in the visible spectrum: A survey , 2017, Image Vis. Comput..

[29]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Omkar M. Parkhi,et al.  VGGFace2: A Dataset for Recognising Faces across Pose and Age , 2017, 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018).

[31]  Lei Zhang,et al.  Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising , 2016, IEEE Transactions on Image Processing.

[32]  Oleg V. Komogortsev,et al.  Complex eye movement pattern biometrics: Analyzing fixations and saccades , 2013, 2013 International Conference on Biometrics (ICB).

[33]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[34]  Arun Ross,et al.  An introduction to biometric recognition , 2004, IEEE Transactions on Circuits and Systems for Video Technology.

[35]  Richa Singh,et al.  On cross spectral periocular recognition , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[36]  Abhishek Kumar Gangwar,et al.  DeepIrisNet: Deep iris representation with applications in iris recognition and cross-sensor iris recognition , 2016, 2016 IEEE International Conference on Image Processing (ICIP).

[37]  Anil K. Jain,et al.  Periocular biometrics in the visible spectrum: A feasibility study , 2009, 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems.

[38]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[39]  Alexei A. Efros,et al.  Image-to-Image Translation with Conditional Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[40]  Ajay Kumar,et al.  Cross-spectral iris recognition using CNN and supervised discrete hashing , 2019, Pattern Recognit..

[41]  Tieniu Tan,et al.  Transferring deep representation for NIR-VIS heterogeneous face recognition , 2016, 2016 International Conference on Biometrics (ICB).

[42]  拓海 杉山,et al.  “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”の学習報告 , 2017 .

[43]  Cecilia R. Aragon,et al.  Biometric identification via an oculomotor plant mathematical model , 2010, ETRA.

[44]  Damon L. Woodard,et al.  Deep Learning for Biometrics , 2018, ACM Comput. Surv..