Laparoscopy in ureteral engineering: a feasibility study.

[1]  V. Molinie,et al.  Terminal urothelium differentiation of engineered neoureter after in vivo maturation in the "omental bioreactor". , 2007, European urology.

[2]  V. Molinie,et al.  Development of a seeded scaffold in the great omentum: feasibility of an in vivo bioreactor for bladder tissue engineering. , 2007, European urology.

[3]  A. Stenzl,et al.  Investigations of urothelial cells seeded on commercially available small intestine submucosa. , 2006, European urology.

[4]  Anant Kumar,et al.  Laparoscopic ureteral reimplantation with extracorporeal tailoring for megaureter: a simple technical nuance. , 2006, The Journal of urology.

[5]  P. Veranič,et al.  Superficial cell differentiation during embryonic and postnatal development of mouse urothelium. , 2006, Tissue & cell.

[6]  F. Ghezzi,et al.  Outcome of laparoscopic ureterolysis for ureteral endometriosis. , 2006, Fertility and sterility.

[7]  James J. Yoo,et al.  Tissue-engineered autologous bladders for patients needing cystoplasty , 2006, The Lancet.

[8]  M. Mazumdar,et al.  49: Pathologic Findings in a Modern Series of 338 Radical and Partial Nephrectomies for Renal Mass , 2006 .

[9]  Benjamin R. Lee,et al.  First prize: ureteral segmental replacement revisited. , 2005, Journal of endourology.

[10]  S. Roth,et al.  Laparoscopic ureteral reconstruction: intracorporal reconfiguration of ileum and colon in a porcine model. , 2005, Journal of endourology.

[11]  Jiake Xu,et al.  Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation. , 2005, Journal of biomedical materials research. Part B, Applied biomaterials.

[12]  R. Keenan,et al.  Microsphere intestinal blood flow analysis during pneumoperitoneum using carbon dioxide and helium , 2005, Surgical Endoscopy And Other Interventional Techniques.

[13]  R. Adam,et al.  Caveolae are negative regulators of transforming growth factor-beta1 signaling in ureteral smooth muscle cells. , 2004, The Journal of urology.

[14]  J. Luketich,et al.  Laparoscopically Harvested Omental Flap for Chest Wall and Intrathoracic Reconstruction , 2004, Annals of plastic surgery.

[15]  K. Ogan,et al.  Ureteral replacement using small-intestinal submucosa and a collagen inhibitor in a porcine model. , 2004, Journal of endourology.

[16]  H. Becker,et al.  Microcirculation and excretory function of the liver under conditions of carbon dioxide pneumoperitoneum , 2004, Surgical Endoscopy And Other Interventional Techniques.

[17]  M. El-Hamid,et al.  Use of single layer small intestinal submucosa for long segment ureteral replacement: a pilot study. , 2004, The Journal of urology.

[18]  G. Apodaca The Uroepithelium: Not Just a Passive Barrier , 2004, Traffic.

[19]  A. Shokeir,et al.  Canine ureteral replacement with long acellular matrix tube: is it clinically applicable? , 2004, The Journal of urology.

[20]  Xin Zhou,et al.  The expression of epidermal growth factor and transforming growth factor-beta1 in the stenotic tissue of congenital pelvi-ureteric junction obstruction in children. , 2003, Journal of pediatric surgery.

[21]  J. Salameh,et al.  Laparoscopic Harvest of Omental Flaps for Reconstruction of Complex Mediastinal Wounds , 2003, JSLS : Journal of the Society of Laparoendoscopic Surgeons.

[22]  A. Hemal,et al.  Minimally invasive retroperitoneoscopic ureterolithotomy. , 2003, The Journal of urology.

[23]  H. Becker,et al.  A new abdominal cavity chamber to study the impact of increased intra-abdominal pressure on microcirculation of gut mucosa by using video microscopy in rats , 2002, Critical care medicine.

[24]  C. Hultman,et al.  Utility of the Omentum in the Reconstruction of Complex Extraperitoneal Wounds and Defects: Donor-Site Complications in 135 Patients from 1975 to 2000 , 2002, Annals of surgery.

[25]  B. Chatterton,et al.  Experimental study of peritoneal blood flow and insufflation pressure during laparoscopy , 2002, The British journal of surgery.

[26]  M. Sofer,et al.  Ureteral segmental replacement using multilayer porcine small-intestinal submucosa. , 2002, Journal of endourology.

[27]  Yuan Zhang,et al.  Coculture of bladder urothelial and smooth muscle cells on small intestinal submucosa: potential applications for tissue engineering technology. , 2000, The Journal of urology.

[28]  R. Clayman,et al.  Laparoscopic replacement of urinary tract segments using biodegradable materials in a large-animal model. , 1999, Journal of endourology.

[29]  Anthony Atala,et al.  De novo reconstitution of a functional mammalian urinary bladder by tissue engineering , 1999, Nature Biotechnology.

[30]  J. Fowler,et al.  Laparoscopy versus laparotomy: an evaluation of adhesion formation after pelvic and paraaortic lymphadenectomy in a porcine model. , 1998, American journal of obstetrics and gynecology.

[31]  Division on Earth Guide for the Care and Use of Laboratory Animals , 1996 .

[32]  R. Clayman,et al.  Laparoscopic ureterolysis. , 1992, The Journal of urology.

[33]  R. Hicks,et al.  Membrane changes during urothelial hyperplasia and neoplasia. , 1976, Cancer research.

[34]  R. M. Hicks,et al.  Interspecies variation in the fine structure and enzyme cytochemistry of mammalian transitional epithelium. , 1973, Journal of anatomy.

[35]  B. Chung,et al.  The use of bowel for ureteral replacement for complex ureteral reconstruction: long-term results. , 2006, The Journal of urology.

[36]  P. Veranič,et al.  What determines differentiation of urothelial umbrella cells? , 2004, European journal of cell biology.

[37]  R. Appell,et al.  De Novo Reconstitution of a Functional Mammalian Urinary Bladder by Tissue Engineering , 1999 .