Fundamental local equivalences in quantum geometric Langlands

In quantum geometric Langlands, the Satake equivalence plays a less prominent role than in the classical theory. Gaitsgory and Lurie proposed a conjectural substitute, later termed the fundamental local equivalence. With a few exceptions, we prove this conjecture and its extension to the affine flag variety by using what amount to Soergel module techniques.

[1]  Yifei Zhao Quantum parameters of the geometric Langlands theory , 2017, 1708.05108.

[2]  M. Kashiwara,et al.  Kazhdan-Lusztig conjecture for affine Lie algebras with negative level II: Nonintegral case , 1996 .

[3]  W. Soergel,et al.  The composition series of modules induced from Whittaker modules , 1997 .

[4]  M. Kashiwara,et al.  Kazhdan-Lusztig conjecture for affine Lie algebras with negative level , 1995 .

[5]  I. Mirkovic,et al.  Geometric Langlands duality and representations of algebraic groups over commutative rings , 2004, math/0401222.

[6]  I. Piatetski-Shapiro,et al.  Distinguished representations and modular forms of half-integral Weight , 1980 .

[7]  S. Raskin Homological methods in semi-infinite contexts , 2020, 2002.01395.

[8]  D. Gaitsgory Eisenstein series and quantum groups , 2015, 1505.02329.

[9]  W. Soergel Kategorie , perverse Garben und Moduln über den Koinvarianten zur Weylgruppe , 1990 .

[10]  G. Lusztig,et al.  ENDOSCOPY FOR HECKE CATEGORIES, CHARACTER SHEAVES AND REPRESENTATIONS , 2019, Forum of Mathematics, Pi.

[11]  V. Drinfeld QUANTIZATION OF HITCHIN’S INTEGRABLE SYSTEM AND HECKE EIGENSHEAVES , 2005 .

[12]  D. Gaitsgory The semi-infinite intersection cohomology sheaf , 2017, 1703.04199.

[13]  Sergey Lysenko,et al.  Towards canonical representations of finite Heisenberg groups , 2021, 2104.14890.

[14]  E. Frenkel,et al.  Local geometric Langlands correspondence and affine Kac-Moody algebras , 2005, math/0508382.

[15]  Eckhard Meinrenken,et al.  LIE GROUPS AND LIE ALGEBRAS , 2021, Lie Groups, Lie Algebras, and Cohomology. (MN-34), Volume 34.

[16]  D. Gaitsgory Twisted Whittaker model and factorizable sheaves , 2007, 0705.4571.

[17]  Dario Beraldo Loop group actions on categories and Whittaker invariants , 2013, 1310.5127.

[18]  G. Dhillon Semi-infinite cohomology and the linkage principle for W-algebras , 2019, Advances in Mathematics.

[19]  D. Gaitsgory,et al.  Metaplectic Whittaker category and quantum groups : the "small" FLE , 2019, 1903.02279.

[20]  R. Bezrukavnikov,et al.  On Koszul duality for Kac-Moody groups , 2011, 1101.1253.

[21]  Christopher Dodd Equivariant coherent sheaves, Soergel bimodules, and categorification of affine Hecke algebras , 2011, 1108.4028.

[22]  D. Gaitsgory A Conjectural Extension of the Kazhdan–Lusztig Equivalence , 2018, Publications of the Research Institute for Mathematical Sciences.

[23]  S. Lysenko Twisted geometric Langlands correspondence for a torus , 2013, 1312.4310.

[24]  D. Gaitsgory Outline of the proof of the geometric Langlands conjecture for GL(2) , 2013, 1302.2506.

[25]  E. Frenkel,et al.  D-modules on the affine flag variety and representations of affine Kac-Moody algebras , 2007, 0712.0788.

[26]  D. Gaitsgory,et al.  Parameters and duality for the metaplectic geometric Langlands theory , 2016, 1608.00284.

[27]  D. Gaitsgory,et al.  A study in derived algebraic geometry Volume II: Deformations, Lie theory and formal geometry , 2018 .

[28]  Fan Gao,et al.  L-groups and the Langlands program for covering groups : a historical introduction , 2017, Astérisque.

[29]  I. Stewart,et al.  Infinite-dimensional Lie algebras , 1974 .

[30]  D. Gaitsgory The semi-infinite intersection cohomology sheaf-II: the Ran space version , 2017, 1708.07205.

[31]  Sam Raskin,et al.  $${\mathcal {W}}$$-algebras and Whittaker categories , 2021 .

[32]  E. Frenkel,et al.  Local Geometric Langlands Correspondence: the Spherical Case , 2007, 0711.1132.

[33]  D. Gaitsgory Quantum Langlands Correspondence , 2016, 1601.05279.

[34]  O. Gabber,et al.  Structure of some categories of representations of infinite-dimensional lie algebras , 1982 .

[35]  B. Feigin,et al.  Duality in W-algebras , 1991 .

[36]  Sam Raskin,et al.  Chiral principal series categories I: Finite dimensional calculations , 2021 .

[37]  The Combinatorics of Category O over symmetrizable Kac-Moody Algebras , 2003, math/0305378.

[38]  Whittaker patterns in the geometry of moduli spaces of bundles on curves , 1999, math/9907133.