Fundamental local equivalences in quantum geometric Langlands
暂无分享,去创建一个
[1] Yifei Zhao. Quantum parameters of the geometric Langlands theory , 2017, 1708.05108.
[2] M. Kashiwara,et al. Kazhdan-Lusztig conjecture for affine Lie algebras with negative level II: Nonintegral case , 1996 .
[3] W. Soergel,et al. The composition series of modules induced from Whittaker modules , 1997 .
[4] M. Kashiwara,et al. Kazhdan-Lusztig conjecture for affine Lie algebras with negative level , 1995 .
[5] I. Mirkovic,et al. Geometric Langlands duality and representations of algebraic groups over commutative rings , 2004, math/0401222.
[6] I. Piatetski-Shapiro,et al. Distinguished representations and modular forms of half-integral Weight , 1980 .
[7] S. Raskin. Homological methods in semi-infinite contexts , 2020, 2002.01395.
[8] D. Gaitsgory. Eisenstein series and quantum groups , 2015, 1505.02329.
[9] W. Soergel. Kategorie , perverse Garben und Moduln über den Koinvarianten zur Weylgruppe , 1990 .
[10] G. Lusztig,et al. ENDOSCOPY FOR HECKE CATEGORIES, CHARACTER SHEAVES AND REPRESENTATIONS , 2019, Forum of Mathematics, Pi.
[11] V. Drinfeld. QUANTIZATION OF HITCHIN’S INTEGRABLE SYSTEM AND HECKE EIGENSHEAVES , 2005 .
[12] D. Gaitsgory. The semi-infinite intersection cohomology sheaf , 2017, 1703.04199.
[13] Sergey Lysenko,et al. Towards canonical representations of finite Heisenberg groups , 2021, 2104.14890.
[14] E. Frenkel,et al. Local geometric Langlands correspondence and affine Kac-Moody algebras , 2005, math/0508382.
[15] Eckhard Meinrenken,et al. LIE GROUPS AND LIE ALGEBRAS , 2021, Lie Groups, Lie Algebras, and Cohomology. (MN-34), Volume 34.
[16] D. Gaitsgory. Twisted Whittaker model and factorizable sheaves , 2007, 0705.4571.
[17] Dario Beraldo. Loop group actions on categories and Whittaker invariants , 2013, 1310.5127.
[18] G. Dhillon. Semi-infinite cohomology and the linkage principle for W-algebras , 2019, Advances in Mathematics.
[19] D. Gaitsgory,et al. Metaplectic Whittaker category and quantum groups : the "small" FLE , 2019, 1903.02279.
[20] R. Bezrukavnikov,et al. On Koszul duality for Kac-Moody groups , 2011, 1101.1253.
[21] Christopher Dodd. Equivariant coherent sheaves, Soergel bimodules, and categorification of affine Hecke algebras , 2011, 1108.4028.
[22] D. Gaitsgory. A Conjectural Extension of the Kazhdan–Lusztig Equivalence , 2018, Publications of the Research Institute for Mathematical Sciences.
[23] S. Lysenko. Twisted geometric Langlands correspondence for a torus , 2013, 1312.4310.
[24] D. Gaitsgory. Outline of the proof of the geometric Langlands conjecture for GL(2) , 2013, 1302.2506.
[25] E. Frenkel,et al. D-modules on the affine flag variety and representations of affine Kac-Moody algebras , 2007, 0712.0788.
[26] D. Gaitsgory,et al. Parameters and duality for the metaplectic geometric Langlands theory , 2016, 1608.00284.
[27] D. Gaitsgory,et al. A study in derived algebraic geometry Volume II: Deformations, Lie theory and formal geometry , 2018 .
[28] Fan Gao,et al. L-groups and the Langlands program for covering groups : a historical introduction , 2017, Astérisque.
[29] I. Stewart,et al. Infinite-dimensional Lie algebras , 1974 .
[30] D. Gaitsgory. The semi-infinite intersection cohomology sheaf-II: the Ran space version , 2017, 1708.07205.
[31] Sam Raskin,et al. $${\mathcal {W}}$$-algebras and Whittaker categories , 2021 .
[32] E. Frenkel,et al. Local Geometric Langlands Correspondence: the Spherical Case , 2007, 0711.1132.
[33] D. Gaitsgory. Quantum Langlands Correspondence , 2016, 1601.05279.
[34] O. Gabber,et al. Structure of some categories of representations of infinite-dimensional lie algebras , 1982 .
[35] B. Feigin,et al. Duality in W-algebras , 1991 .
[36] Sam Raskin,et al. Chiral principal series categories I: Finite dimensional calculations , 2021 .
[37] The Combinatorics of Category O over symmetrizable Kac-Moody Algebras , 2003, math/0305378.
[38] Whittaker patterns in the geometry of moduli spaces of bundles on curves , 1999, math/9907133.