PRODUCTION AND CHARACTERIZATION OF CELLULOLYTIC ENZYMES BY ASPERGILLUS NIGER AND RHIZOPUS SP . BY SOLID STATE FERMENTATION OF PRICKLY PEAR

Prickly palm cactus husk was used as a solid-state fermentation support substrate for the production of cellulolytic enzymes using Aspergillus niger and Rhizopus sp. A Box-Behnken design was used to evaluate the effects of water activity, fermentation time and temperature on endoglucanase and total cellulase production. Response Surface Methodology showed that optimum conditions for endoglucanase production were achieved at after 70.35 h of fermentation at 29.56°C and a water activity of 0.875 for Aspergillus niger and after 68.12 h at 30.41°C for Rhizopus sp. Optimum conditions for total cellulase production were achieved after 74.27 h of fermentation at 31.22°C for Aspergillus niger and after 72.48 h and 27.86°C for Rhizopus sp. Water activity had a significant effect on Aspergillus niger endoglucanase production only. In industrial applications, enzymatic characterization is important for optimizing variables such as temperature and pH. In this study we showed that endoglucanase and total cellulase had a high level of thermostability and pH stability in all the enzymatic extracts. Enzymatic deactivation kinetic experiments indicated that the enzymes remained active after the freezing of the crude extract. Based on the results, bioconversion of cactus is an excellent alternative for the production of thermostable enzymes.

[1]  Ashok Pandey,et al.  Solid-state fermentation , 1994 .

[2]  Marcelo Franco,et al.  EFFECT OF SOLID STATE FERMENTATION ON NUTRITIONAL CONTENT AND EVALUATION OF DEGRADABILITY IN CACTUS PEAR , 2015 .

[3]  A. Amrane,et al.  Statistical optimization of culture medium for neutral protease production by Aspergillus oryzae. Comparative study between solid and submerged fermentations on tomato pomace , 2013 .

[4]  Marcelo Franco,et al.  Application of response surface methodology for producing cellulolytic enzymes by solid-state fermentation from the puple mombin (Spondias purpurea L.) residue , 2013, Food Science and Biotechnology.

[5]  K. Heese,et al.  Characterization of optimized production, purification and application of laccase from Ganoderma lucidum , 2013 .

[6]  Z. Ahmad,et al.  PARTIAL PURIFICATION AND CHARACTERIZATION OF XYLANASE PRODUCED FROM Aspergillus niger USING WHEAT BRAN , 2013 .

[7]  M. Asgher,et al.  Utilization of wheat bran for enhanced production of exo-polygalacturonase by Penicillium notatum using response surface methodology. , 2013 .

[8]  Renata Cristina Ferreira Bonomo,et al.  Optimisation of solid state fermentation of potato peel for the production of cellulolytic enzymes , 2012 .

[9]  Marcelo Franco,et al.  Optimization of productions of cellulolytic enzymes by Aspergillus niger using residue of mango a substrate , 2011 .

[10]  Renata Cristina Ferreira Bonomo,et al.  PRODUÇÃO DE AMILOGLUCOSIDASE UTILIZANDO COMO SUBSTRATO A PALMA FORRAGEIRA , 2011 .

[11]  J. Toca-Herrera,et al.  Cost analysis in laccase production. , 2011, Journal of environmental management.

[12]  R Maciel Filho,et al.  Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. , 2011, Bioresource technology.

[13]  Caroline Mariana de Aguiar,et al.  Produção de celulases por Aspergillus niger e cinética da desativação celulásica , 2011 .

[14]  M. Faramarzi,et al.  Purification and biochemical characterization of extracellular laccase from the ascomycete Paraconiothyrium variabile. , 2011, Bioresource technology.

[15]  J. S. Souto,et al.  PALMA FORRAGEIRA: ADAPTAÇÃO E IMPORTÂNCIA PARA OS ECOSSISTEMAS ÁRIDOS E SEMIÁRIDOS , 2010, Revista Verde de Agroecologia e Desenvolvimento Sustentável.

[16]  Carlos Ricardo Soccol,et al.  Bioethanol from lignocelluloses: Status and perspectives in Brazil. , 2010, Bioresource technology.

[17]  Shakuntala Ghorai,et al.  Fungal biotechnology in food and feed processing. , 2009 .

[18]  Carlos Ricardo Soccol,et al.  Recent advances in solid-state fermentation. , 2009 .

[19]  Carmen Sánchez,et al.  Lignocellulosic residues: biodegradation and bioconversion by fungi. , 2009, Biotechnology advances.

[20]  Fernando Galembeck,et al.  Sustainable Use Of Biomass And Natural Resources For Chemical Innovation [aproveitamento Sustentável De Biomassa E De Recursos Naturais Na InovaçÃo Quimica] , 2009 .

[21]  P. Nobel,et al.  Temperature tolerances for stems and roots of two cultivated cacti, Nopalea cochenillifera and Opuntia robusta: Acclimation, light, and drought , 2008 .

[22]  E. Gomes,et al.  Purification and characterization of two β-glucosidases from the thermophilic fungusThermoascus aurantiacus , 2008, Folia Microbiologica.

[23]  L. Colla,et al.  Congelamento e descongelamento – sua influência sobre os alimentos , 2007 .

[24]  L. H. Pelizer,et al.  Utilização de resíduos agro-industriais em processos biotecnológicos como perspectiva de redução do impacto ambiental , 2007 .

[25]  M. V. F. Santos,et al.  Micropropagação de palma forrageira cv. Miúda ( Nopalea cochenillifera Salm Dyck) , 2007 .

[26]  R. Silva,et al.  Enzimas termoestáveis: fontes, produção e aplicação industrial , 2007 .

[27]  J. Dubeux,et al.  Productivity of Opuntia ficus-indica (L.) Miller under different N and P fertilization and plant population in north-east Brazil , 2006 .

[28]  M. Himmel,et al.  Outlook for cellulase improvement: screening and selection strategies. , 2006, Biotechnology advances.

[29]  L. Olsson,et al.  Production of cellulases by Penicillium brasilianum IBT 20888—Effect of substrate on hydrolytic performance , 2006 .

[30]  Lúcia de Fátima Araújo,et al.  Protein enrichment of cactus pear (Opuntia ficus - indica Mill) using Saccharomyces cerevisiae in solid-state fermentation , 2005 .

[31]  S. R. Couto,et al.  Application of solid-state fermentation to ligninolytic enzyme production , 2005 .

[32]  I. Akpan,et al.  Hydrolysis of raw tuber starches by amylase of Aspergillus niger AM07 isolated from the soil , 2005 .

[33]  M. Camassola,et al.  Characterization of the Cellulase Complex of Penicillium echinulatum , 2004 .

[34]  José Antônio Aleixo da Silva,et al.  Utilização de técnicas multivariadas na avaliação da divergência genética entre clones de palma forrageira (Opuntia ficus-indica Mill.) , 2003 .

[35]  H. Jang,et al.  Production and characterization of thermostable cellulases from Streptomyces transformant T3-1 , 2003 .

[36]  P. Gervais,et al.  The role of water in solid-state fermentation , 2003 .

[37]  E. Gomes,et al.  Purification and characterization of two beta-glucosidases from the thermophilic fungus Thermoascus aurantiacus. , 2002, Folia microbiologica.

[38]  W. Steiner,et al.  Simultaneous production of high activities of thermostable endoglucanase and β-glucosidase by the wild thermophilic fungus Thermoascus aurantiacus , 2000, Applied Microbiology and Biotechnology.

[39]  P. V. Soest,et al.  A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. , 1992, Journal of animal science.

[40]  P. V. Soest,et al.  Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. , 1991, Journal of dairy science.

[41]  Van Soest Carbohydrate methodology, metabolism, and nutritional implications in dairy cattle : Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition , 1991 .

[42]  D. K. Sandhu,et al.  Purification and characterization of cellulolytic enzymes produced by Aspergillus nidulans. , 1990, The Journal of applied bacteriology.

[43]  T. K. Ghose Measurement of cellulase activities , 1987 .

[44]  G. L. Miller Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar , 1959 .