Supramolecular assembly on surfaces: manipulating conductance in noncovalently modified mesoscale structures.

Molecules capable of complementary hydrogen bonding were used to control the noncovalent self-assembly and electronic properties of a chemically well-defined surface mesostructure. In this work, we patterned a footprint region for molecular assembly on a surface and used moieties featuring complementary recognition to tune the current-voltage properties of the patterned region. With the appropriate functionalities on the complementary moieties, we were able to increase and decrease the observed conductance in surface-bound mesoscale structures imaged by scanning tunneling microscopy (STM).