Cohomology in Grothendieck Topologies and Lower Bounds in Boolean Complexity II: A Simple Example

In a previous paper we have suggested a number of ideas to attack circuit size complexity with cohomology. As a simple example, we take circuits that can only compute the AND of two inputs, which essentially reduces to SET COVER. We show a very special case of the cohomological approach (one particular free category, using injective and superskyscraper sheaves) gives the linear programming bound coming from the relaxation of the standard integer programming reformulation of SET COVER.

[1]  Stephen Smale,et al.  On the topology of algorithms, I , 1987, J. Complex..

[2]  S. I. Gelʹfand,et al.  Methods of Homological Algebra , 1996 .

[3]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[4]  Daniel C. Isaksen,et al.  Topological hypercovers and 1-realizations , 2004 .

[5]  Ingo Wegener,et al.  The complexity of Boolean functions , 1987 .

[6]  Michael Ben-Or,et al.  Lower bounds for algebraic computation trees , 1983, STOC.

[7]  R. Hartshorne Residues and Duality: Lecture Notes of a Seminar on the Work of A. Grothendieck, Given at Harvard 1963 /64 , 1966 .

[8]  A. Grothendieck,et al.  Théorie des Topos et Cohomologie Etale des Schémas , 1972 .

[9]  Ketan Mulmuley,et al.  Geometric Complexity Theory I: An Approach to the P vs. NP and Related Problems , 2002, SIAM J. Comput..

[10]  Jonathan L. Gross Every connected regular graph of even degree is a Schreier coset graph , 1977, J. Comb. Theory, Ser. B.

[11]  M. Larsen,et al.  Grothendieck ring of pretriangulated categories , 2004, math/0401009.

[12]  Richard J. Lipton,et al.  Multidimensional Searching Problems , 1976, SIAM J. Comput..

[13]  J. Friedman Some geometric aspects of graphs and their eigenfunctions , 1993 .

[14]  J. Michael Steele,et al.  Lower Bounds for Algebraic Decision Trees , 1982, J. Algorithms.

[15]  L. Illusie Séminaire de Géométrie Algébrique du Bois-Marie 1965–66 SGA 5 , 1977 .

[16]  Graeme Segal,et al.  Classifying spaces and spectral sequences , 1968 .

[17]  J. Brasselet,et al.  Combinatorial duality and intersection product: A direct approach , 2003, math/0309352.

[18]  Alexander A. Razborov,et al.  Natural Proofs , 1997, J. Comput. Syst. Sci..

[19]  A. Bondal,et al.  Reconstruction of a Variety from the Derived Category and Groups of Autoequivalences , 1997, Compositio Mathematica.

[20]  C. J. Mitchell PRIMALITY AND CRYPTOGRAPHY (Wiley‐Teubner Series in Computer Science) , 1987 .