暂无分享,去创建一个
[1] Stephen Smale,et al. On the topology of algorithms, I , 1987, J. Complex..
[2] S. I. Gelʹfand,et al. Methods of Homological Algebra , 1996 .
[3] Vijay V. Vazirani,et al. Approximation Algorithms , 2001, Springer Berlin Heidelberg.
[4] Daniel C. Isaksen,et al. Topological hypercovers and 1-realizations , 2004 .
[5] Ingo Wegener,et al. The complexity of Boolean functions , 1987 .
[6] Michael Ben-Or,et al. Lower bounds for algebraic computation trees , 1983, STOC.
[7] R. Hartshorne. Residues and Duality: Lecture Notes of a Seminar on the Work of A. Grothendieck, Given at Harvard 1963 /64 , 1966 .
[8] A. Grothendieck,et al. Théorie des Topos et Cohomologie Etale des Schémas , 1972 .
[9] Ketan Mulmuley,et al. Geometric Complexity Theory I: An Approach to the P vs. NP and Related Problems , 2002, SIAM J. Comput..
[10] Jonathan L. Gross. Every connected regular graph of even degree is a Schreier coset graph , 1977, J. Comb. Theory, Ser. B.
[11] M. Larsen,et al. Grothendieck ring of pretriangulated categories , 2004, math/0401009.
[12] Richard J. Lipton,et al. Multidimensional Searching Problems , 1976, SIAM J. Comput..
[13] J. Friedman. Some geometric aspects of graphs and their eigenfunctions , 1993 .
[14] J. Michael Steele,et al. Lower Bounds for Algebraic Decision Trees , 1982, J. Algorithms.
[15] L. Illusie. Séminaire de Géométrie Algébrique du Bois-Marie 1965–66 SGA 5 , 1977 .
[16] Graeme Segal,et al. Classifying spaces and spectral sequences , 1968 .
[17] J. Brasselet,et al. Combinatorial duality and intersection product: A direct approach , 2003, math/0309352.
[18] Alexander A. Razborov,et al. Natural Proofs , 1997, J. Comput. Syst. Sci..
[19] A. Bondal,et al. Reconstruction of a Variety from the Derived Category and Groups of Autoequivalences , 1997, Compositio Mathematica.
[20] C. J. Mitchell. PRIMALITY AND CRYPTOGRAPHY (Wiley‐Teubner Series in Computer Science) , 1987 .