An MCMC Approach to Classical Estimation

This paper studies computationally and theoretically attractive estimators referred here as to the Laplace type estimators (LTE). The LTE include means and quantiles of Quasi-posterior distributions defined as transformations of general (non-likelihood-based) statistical criterion functions, such as those in GMM, nonlinear IV, empirical likelihood, and minimum distance methods. The approach generates an alternative to classical extremum estimation and also falls outside the parametric Bayesian approach. For example, it offers a new attractive estimation method for such important semi-parametric problems as censored and instrumental quantile regression, nonlinear IV, GMM, and value-at-risk, models. The LTE's are computed using Markov Chain Monte Carlo methods, which help circumvent the computational curse of dimensionality. A large sample theory is obtained and illustrated for regular cases.

[1]  J. Wolfowitz,et al.  An Introduction to the Theory of Statistics , 1951, Nature.

[2]  L. M. M.-T. Theory of Probability , 1929, Nature.

[3]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[4]  T. W. Anderson The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities , 1955 .

[5]  P. Bickel,et al.  Some contributions to the asymptotic theory of Bayes solutions , 1969 .

[6]  P. J. Huber Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .

[7]  Bronwyn H Hall,et al.  Estimation and Inference in Nonlinear Structural Models , 1974 .

[8]  S. Stigler Studies in the History of Probability and Statistics. XXXIV Napoleonic statistics: The work of Laplace , 1975 .

[9]  R. Hogg Estimates of Percentile Regression Lines Using Salary Data , 1975 .

[10]  C. Manski MAXIMUM SCORE ESTIMATION OF THE STOCHASTIC UTILITY MODEL OF CHOICE , 1975 .

[11]  Jana Jurečková,et al.  Asymptotic Relations of $M$-Estimates and $R$-Estimates in Linear Regression Model , 1977 .

[12]  Takeshi Amemiya,et al.  The Maximum Likelihood and the Nonlinear Three-Stage Least Squares Estimator in the General Nonlinear Simultaneous Equation Model , 1977 .

[13]  R. Z. Khasʹminskiĭ,et al.  Statistical estimation : asymptotic theory , 1981 .

[14]  L. Hansen Large Sample Properties of Generalized Method of Moments Estimators , 1982 .

[15]  Stephen M. Stigler,et al.  Who Discovered Bayes's Theorem? , 1983 .

[16]  J. Powell,et al.  Least absolute deviations estimation for the censored regression model , 1984 .

[17]  C. Sims Bayesmth: A Program for Multivariate Bayesian Interpolation , 1986 .

[18]  W. Newey,et al.  Large sample estimation and hypothesis testing , 1986 .

[19]  D. Freedman,et al.  On the consistency of Bayes estimates , 1986 .

[20]  H. White,et al.  A Unified Theory of Estimation and Inference for Nonlinear Dynamic Models , 1988 .

[21]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[22]  D. Pollard,et al.  Simulation and the Asymptotics of Optimization Estimators , 1989 .

[23]  James L. Powell,et al.  Efficient Estimation of Linear and Type I Censored Regression Models Under Conditional Quantile Restrictions , 1990, Econometric Theory.

[24]  Albert Y. Lo,et al.  Consistent and Robust Bayes Procedures for Location Based on Partial Information , 1990 .

[25]  A. Owen Empirical Likelihood Ratio Confidence Regions , 1990 .

[26]  W. Newey,et al.  Uniform Convergence in Probability and Stochastic Equicontinuity , 1991 .

[27]  P. Burridge,et al.  A Very Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix , 1991 .

[28]  The theory and practice of quantile regression , 1991 .

[29]  D. Pollard Asymptotics for Least Absolute Deviation Regression Estimators , 1991, Econometric Theory.

[30]  Art B. Owen,et al.  Empirical Likelihood for Linear Models , 1991 .

[31]  William L. Goffe,et al.  SIMANN: FORTRAN module to perform Global Optimization of Statistical Functions with Simulated Annealing , 1992 .

[32]  Halbert White,et al.  Estimation, inference, and specification analysis , 1996 .

[33]  Donald W. K. Andrews,et al.  Empirical Process Methods in Econometrics , 1993 .

[34]  J. Lawless,et al.  Empirical Likelihood and General Estimating Equations , 1994 .

[35]  John E. Kolassa,et al.  Series Approximation Methods in Statistics , 1994 .

[36]  D. Andrews The Large Sample Correspondence between Classical Hypothesis Tests and Bayesian Posterior Odds Tests , 1994 .

[37]  G. Imbens,et al.  Information Theoretic Approaches to Inference in Moment Condition Models , 1995 .

[38]  Steven T. Berry,et al.  Automobile Prices in Market Equilibrium , 1995 .

[39]  Peter C. B. Phillips,et al.  An Asymptotic Theory of Bayesian Inference for Time Series , 1996 .

[40]  Arnold Zellner Bayesian Method of Moments (BMOM) Analysis of Mean and Regression Models , 1996 .

[41]  G. Imbens,et al.  Nonparametric Applications of Bayesian Inference , 1996 .

[42]  Jinyong Hahn Bayesian Bootstrap of the Quantile Regression Estimator--A Large Sample Study , 1997 .

[43]  Bernd Fitzenberger,et al.  A Guide to Censored Quantile Regressions , 1997 .

[44]  Alberto Abadie Changes in Spanish Labor Income Structure During the 1980's:a Quantile Regression Approach , 1997 .

[45]  Guido W. Imbens,et al.  One-step estimators for over-identified generalized method of moments models , 1997 .

[46]  B. M. Pötscher,et al.  Dynamic Nonlinear Econometric Models , 1997 .

[47]  Yuichi Kitamura,et al.  An Information-Theoretic Alternative to Generalized Method of Moments Estimation , 1997 .

[48]  Yuichi Kitamura,et al.  Empirical likelihood methods with weakly dependent processes , 1997 .

[49]  D. Andrews A Stopping Rule for the Computation of Generalized Method of Moments Estimators , 1997 .

[50]  Jae-Young Kim,et al.  Large Sample Properties of Posterior Densities, Bayesian Information Criterion and the Likelihood Principle in Nonstationary Time Series Models , 1998 .

[51]  O. Bunke,et al.  Asymptotic behavior of Bayes estimates under possibly incorrect models , 1998 .

[52]  Peter F. Christoffersen,et al.  Testing, Comparing, and Combining Value-at-Risk Measures , 1999 .

[53]  K. DonaldW. Generalized Method of Moments Estimation When a Parameter Is on a Boundary , 1999 .

[54]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[55]  James O. Berger,et al.  Bayesian Analysis: A Look at Today and Thoughts of Tomorrow , 2000 .

[56]  Song Liang,et al.  Laplace approximations for sums of independent random vectors , 2000 .

[57]  Victor Chernozhukov,et al.  Conditional value-at-risk: Aspects of modeling and estimation , 2000 .

[58]  A. Gelfand,et al.  Bayesian Semiparametric Median Regression Modeling , 2001 .

[59]  James L. Powell,et al.  Two-step estimation of semiparametric censored regression models , 2001 .

[60]  J. Geweke,et al.  Computationally Intensive Methods for Integration in Econometrics , 2001 .

[61]  Siddhartha Chib,et al.  MARKOV CHAIN MONTE CARLO METHODS: COMPUTATION AND INFERENCE , 2001 .

[62]  Jae-Young Kim,et al.  Limited information likelihood and Bayesian analysis , 2002 .

[63]  M. Hubert,et al.  The Deepest Regression Method , 2002 .

[64]  Xiaotong Shen,et al.  Empirical Likelihood , 2002 .

[65]  V. Chernozhukov,et al.  An IV Model of Quantile Treatment Effects , 2002 .

[66]  Whitney K. Newey,et al.  Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators , 2003 .

[67]  P. Phillips BOOTSTRAPPING I(1) DATA BY PETER C. B. PHILLIPS COWLES FOUNDATION PAPER NO. 1310 COWLES FOUNDATION FOR RESEARCH IN ECONOMICS , 2010 .