Template Synthesis of Alkyl-Substituted Metal Isocorroles: Template Synthesis of Alkyl-Substituted Metal Isocorroles

Five metal complexes of 10,10-dimethylisocorrole ligands with full β-pyrrolic substitution is have been synthesized. The preparation of nickel(II), palladium(II), and copper(II) complexes was achieved by metal-templated oxidative macrocyclization of tetrapyrrolic 5,15-biladiene precursors. The reaction conditions for successful macrocycle formation in yields of 18–32 % depended strongly on the type of metal ion used. In the case of palladium, three different macrocyclic products were observed by varying the cyclization protocol. The ring-contracted metal 10-isocorroles were fully characterized by single-crystal X-ray diffraction, optical and resonance spectroscopy, and electrochemical methods. All the compounds belong to the class of nonaromatic porphyrinoids and their structural and spectroscopic properties as well as their redox behavior were found to show the characteristic features of both ring-contracted aromatic porphyrinoids and linear tetrapyrrole complexes.

[1]  T. Nyokong,et al.  Photophysical properties of tetraphenylporphyrinsubphthalocyanine conjugates , 2016 .

[2]  Mengxi Yang,et al.  Quinoline-annulated chlorins and chlorin-analogs , 2016 .

[3]  D. Nocera,et al.  Electronic Structure of Copper Corroles. , 2016, Angewandte Chemie.

[4]  M. Senge,et al.  Conformational control of cofactors in nature - the influence of protein-induced macrocycle distortion on the biological function of tetrapyrroles. , 2015, Chemical communications.

[5]  M. Bauer,et al.  Experimentelle und theoretische Untersuchung der Existenz von CuII, CuIII und CuIV in Kupfercorrolen , 2015 .

[6]  M. Bauer,et al.  Experimental and Theoretical Investigations of the Existence of Cu(II), Cu(III), and Cu(IV) in Copper Corrolato Complexes. , 2015, Angewandte Chemie.

[7]  Jagannath Bhuyan Metalloisoporphyrins: from synthesis to applications. , 2015, Dalton transactions.

[8]  M. Bröring,et al.  The Corrole Radical. , 2015, Angewandte Chemie.

[9]  Arun Kumar,et al.  Exploring anagostic interactions in 5,15-porphodimethene metal complexes. , 2014, Dalton transactions.

[10]  Markus Funk,et al.  Iron 10-thiacorroles: bioinspired iron(III) complexes with an intermediate spin (S=3/2) ground state. , 2014, Chemistry.

[11]  J. Wojaczyński,et al.  Photooxidation of unhindered triarylcorroles , 2013 .

[12]  M. Bröring,et al.  10-Heterocorroles: ring-contracted porphyrinoids with fine-tuned aromatic and metal-binding properties. , 2013, Angewandte Chemie.

[13]  M. Ghidiu,et al.  Synthesis, electrochemistry, and photophysics of a family of phlorin macrocycles that display cooperative fluoride binding. , 2013, Journal of the American Chemical Society.

[14]  T. Kondo,et al.  meso-Thiaporphyrinoids revisited: missing of sulfur by small metals. , 2012, Chemistry.

[15]  Tomohiro Ito,et al.  Gram-scale synthesis of nickel(II) norcorrole: the smallest antiaromatic porphyrinoid. , 2012, Angewandte Chemie.

[16]  Louis J. Farrugia,et al.  WinGX and ORTEP for Windows: an update , 2012 .

[17]  C. Pietzonka,et al.  Pseudohalogenido complexes of iron-2,2′-bidipyrrins , 2012 .

[18]  H. Shinokubo,et al.  Synthesis of nickel(II) azacorroles by Pd-catalyzed amination of α,α'-dichlorodipyrrin Ni(II) complex and their properties. , 2012, Chemistry.

[19]  Kevin M. Smith,et al.  Syntheses, properties and cellular studies of metalloisoporphyrins. , 2011, Journal of porphyrins and phthalocyanines.

[20]  Kevin M. Smith,et al.  Functionalization of the corrole ring: the role of isocorrole intermediates. , 2011, Chemical communications.

[21]  J. Conradie,et al.  Corroles cannot ruffle. , 2011, Inorganic chemistry.

[22]  M. Bröring,et al.  A Biomimetic Copper Corrole – Preparation, Characterization, and Reconstitution with Horse Heart Apomyoglobin , 2010 .

[23]  Kevin M. Smith,et al.  Synthesis and characterization of free-base, copper, and nickel isocorroles. , 2010, Inorganic chemistry.

[24]  Timothy D. LeSaulnier,et al.  Investigation of complementary reactions of a dipyrromethane with a dipyrromethanemonocarbinol leading to a 5-isocorrole. , 2010, The Journal of organic chemistry.

[25]  Kevin M. Smith,et al.  Demetalation of silver(III) corrolates. , 2009, Inorganic chemistry.

[26]  Aki Tsukajima,et al.  Synthesis and structure of isocorrole metal complexes , 2009 .

[27]  R. Krüger,et al.  Functional Porphyrinoids from a Biomimetically Decorated Bipyrrole , 2008 .

[28]  M. Bröring,et al.  Unexpected isolation and characterization of a chloroiron complex with a 10-acetylcorrole ligand , 2008 .

[29]  Martin Bröring,et al.  Norcorrol: die kleinste Porphyrin‐Strukturvariante mit N4‐Kern , 2008 .

[30]  M. Bröring,et al.  Norcorrole: observation of the smallest porphyrin variant with a N4 core. , 2008, Angewandte Chemie.

[31]  S. Link,et al.  Iron chelates of 2,2'-bidipyrrin: stable analogues of the labile iron bilins. , 2008, Chemistry.

[32]  C. Macrae,et al.  Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures , 2008 .

[33]  R. Paolesse,et al.  One-step synthesis of isocorroles , 2007 .

[34]  M. Bröring,et al.  New porphyrinoids: vanadyl(IV) complexes of meso-aryl-substituted corrphycene and 10-oxocorrole ligands. , 2007, Inorganic chemistry.

[35]  M. Bröring,et al.  Halogenido and Pseudohalogenido Complexes of (2,3,7,8,12,13,17,18‐Octaethyl‐5,15‐di‐p‐tolylcorrolato)manganese(IV) , 2007 .

[36]  S. Link,et al.  Helical Transition-Metal Complexes of Constrained 2,2′-Bidipyrrins , 2007 .

[37]  Aki Tsukajima,et al.  Synthesis and Chiroptical Property of C2-Symmetric Cyclohexapyrrole , 2007 .

[38]  Max C. Holthausen,et al.  Zum elektronischen Grundzustand des Kupfercorrols , 2007 .

[39]  M. Holthausen,et al.  Revisiting the electronic ground state of copper corroles. , 2007, Angewandte Chemie.

[40]  Aki Tsukajima,et al.  Synthesis of isocorrole and the higher homologues , 2006 .

[41]  M. Bröring,et al.  Conformational behaviour of dinuclear Rh(I) complexes of the open-chain tetrapyrrolic ligand 2,2′-bidipyrrin (H2BDP) , 2005 .

[42]  W. Dehaen,et al.  5,5-Dialkyldipyrromethane as a precursor for the synthesis of calix[4]phyrins and pseudocorroles using MacDonald [2+2] condensations , 2005 .

[43]  M. Bröring,et al.  Iridium Complexes of 2,2′‐Bidipyrrins , 2005 .

[44]  E. Vogel,et al.  Spiroconjugation in spirodicorrolato-dinickel(II). , 2003, Chemistry.

[45]  M. Bröring,et al.  Superoxide induced cyclizations of metallo-2,2'-bidipyrrins , 2003 .

[46]  Kevin M. Smith,et al.  Syntheses and some chemistry of stable isoporphyrin systems , 2002 .

[47]  M. Bröring,et al.  Tuning the Helicity of (2,2′-Bidipyrrinato)-nickel(II) Complexes , 2002 .

[48]  J. Gisselbrecht,et al.  Structural and Spectroelectrochemical Studies on (2,2′‐Bidipyrrinato)copper(II) and ‐palladium(II) Complexes , 2002 .

[49]  M. Bröring,et al.  Manganese as a template: a new synthesis of corrole. , 2001, Chemical communications.

[50]  H. Humpf,et al.  Molecular and Electronic Structure of (2,2′-Bidipyrrinato)nickel(II) Complexes , 2001 .

[51]  E. Vogel,et al.  Competitive formation of helical cycloocta- and cyclododecapyrroles. , 2000, The Journal of organic chemistry.

[52]  Lex,et al.  Isoporphycene: The Fourth Constitutional Isomer of Porphyrin with an N(4) Core-Occurrence of E/Z Isomerism. , 1999, Angewandte Chemie.

[53]  E. Vogel,et al.  Isoporphycen, das vierte Porphyrin-Konstitutionsisomer mit N4-Kern – Auftreten von E/Z-Isomerie , 1999 .

[54]  S. Neya,et al.  Synthesis of functionalized corrphycene by copper(II)-promoted cyclization , 1998 .

[55]  A. Heger,et al.  Contracted Porphyrins: Octaethylisocorrole , 1997 .

[56]  E. Vogel,et al.  Kontrahierte Porphyrine: Octaethylisocorrol , 1997 .

[57]  K. Houk,et al.  PALLADIUM COMPLEXES OF THE NEW PORPHYRIN ISOMERS (Z)- AND (E)-ISOPORPHYCENE : PDII-INDUCED CYCLIZATION OF TETRAPYRROLEALDEHYDES , 1997 .

[58]  E. Vogel,et al.  Palladiumkomplexe der neuen Porphyrinisomere (Z)‐ und (E)‐Isoporphycen – PdII‐induzierte Cyclisierungen von Tetrapyrrolaldehyden , 1997 .

[59]  R. Paolesse,et al.  The effect of steric hindrance in the synthesis of corrolates via the cobalt catalyzed cyclization of 2-(α-hydroxyalkyl)pyrroles , 1995 .

[60]  Kevin M. Smith,et al.  Structural consequences of porphyrin tautomerization. Molecular structure of a zinc isoporphyrin , 1993 .

[61]  Giovanni Luca Cascarano,et al.  Completion and refinement of crystal structures with SIR92 , 1993 .

[62]  Kevin M. Smith,et al.  Stable isoporphyrin chromophores: synthesis , 1992 .

[63]  E. Vogel,et al.  Isocorrole: Neuartige tetrapyrrolische Makrocyclen , 1990 .

[64]  S. Will,et al.  Isocorroles: Novel Tetrapyrrolic Macrocycles , 1990 .

[65]  Kevin M. Smith,et al.  Porphyrin synthesis from a,c-biladienes. Evidence for a common mechanistic pathway in the electrochemical and chemical routes: formation of novel macrocycles possessing the homoporphyrin carbon skeleton , 1990 .

[66]  Kevin M. Smith,et al.  SYNTHESIS AND REACTIONS OF SOME ACETAL DERIVATIVES OF FORMYLPYRROLES , 1976 .

[67]  H. Callot,et al.  Rearrangement of N-substituted porphyrins. Preparation and structure of homoporphyrins , 1975 .

[68]  R. Woodward,et al.  The total synthesis of chlorophyll , 1960 .

[69]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[70]  Arthur Schweiger,et al.  EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. , 2006, Journal of magnetic resonance.

[71]  H. Falk,et al.  On the chemistry of pyrrole pigments, XCVI: An efficient synthesis of corrphycenes , 1996 .

[72]  R. Rodrigo,et al.  432. 2,2′-Bipyrrolic macrocyclic ring systems , 1963 .

[73]  A. W. Johnson,et al.  331. The synthesis of derivatives of corrole (pentadehydrocorrin) , 1960 .