Spin-orbit torque switching without an external field using interlayer exchange coupling.

Manipulation of the magnetization of a perpendicular ferromagnetic free layer by spin-orbit torque (SOT) is an attractive alternative to spin-transfer torque (STT) in oscillators and switches such as magnetic random-access memory (MRAM) where a high current is passed across an ultrathin tunnel barrier. A small symmetry-breaking bias field is usually needed for deterministic SOT switching but it is impractical to generate the field externally for spintronic applications. Here, we demonstrate robust zero-field SOT switching of a perpendicular CoFe free layer where the symmetry is broken by magnetic coupling to a second in-plane exchange-biased CoFe layer via a nonmagnetic Ru or Pt spacer. The preferred magnetic state of the free layer is determined by the current polarity and the sign of the interlayer exchange coupling (IEC). Our strategy offers a potentially scalable solution to realize bias-field-free switching that can lead to a generation of SOT devices, combining a high storage density and endurance with a low power consumption.

[1]  Eiji Saitoh,et al.  Theory of spin Hall magnetoresistance , 2013, 1302.1352.

[2]  Abhijit Ghosh,et al.  Unidirectional spin Hall magnetoresistance in ferromagnet/normal metal bilayers , 2015, Nature Physics.

[3]  Yong Jiang,et al.  Oscillatory antiferromagnetic interlayer coupling in Co/Pt multilayer with perpendicular anisotropy , 2008 .

[4]  Nazarov,et al.  Finite-element theory of transport in ferromagnet-normal metal systems , 2000, Physical review letters.

[5]  Spin Hall Magnetoresistance in Metallic Bilayers. , 2015, Physical review letters.

[6]  S. Parkin,et al.  Chiral spin torque at magnetic domain walls. , 2013, Nature nanotechnology.

[7]  J. Bokor,et al.  Switching of perpendicularly polarized nanomagnets with spin orbit torque without an external magnetic field by engineering a tilted anisotropy , 2014, Proceedings of the National Academy of Sciences.

[8]  A. Fert,et al.  Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films , 2012, 1211.5970.

[9]  B. Diény,et al.  IrMn microstructural effects on exchange bias variability in patterned arrays of IrMn/Co square dots , 2014 .

[10]  H. Ohno,et al.  Interface control of the magnetic chirality in CoFeB/MgO heterostructures with heavy-metal underlayers. , 2014, Nature communications.

[11]  G. Beach,et al.  Current-driven dynamics of chiral ferromagnetic domain walls. , 2013, Nature materials.

[12]  J. Katine,et al.  Current-induced magnetization reversal in nanopillars with perpendicular anisotropy , 2006 .

[13]  D. Ralph,et al.  Central role of domain wall depinning for perpendicular magnetization switching driven by spin torque from the spin Hall effect , 2013, 1312.7301.

[14]  J. H. Franken,et al.  Domain wall depinning governed by the spin Hall effect. , 2012, Nature materials.

[15]  H. Ohno,et al.  Magnetization switching by spin-orbit torque in an antiferromagnet-ferromagnet bilayer system. , 2015, Nature materials.

[16]  R. Gross,et al.  Spin Hall magnetoresistance induced by a nonequilibrium proximity effect. , 2012, Physical review letters.

[17]  Surender Kumar Sharma,et al.  Exchange bias , 1999 .

[18]  Kang L. Wang,et al.  Switching of perpendicular magnetization by spin-orbit torques in the absence of external magnetic fields. , 2013, Nature nanotechnology.

[19]  S. Bandiera,et al.  Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection , 2011, Nature.

[20]  K. Borisov,et al.  Giant spontaneous hall effect in zero-moment Mn2RuxGa , 2015, 2015 IEEE Magnetics Conference (INTERMAG).

[21]  Kang L. Wang,et al.  Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure. , 2014, Nature materials.

[22]  H. Ohno,et al.  A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. , 2010, Nature materials.

[23]  Timo Kuschel,et al.  Quantitative study of the spin Hall magnetoresistance in ferromagnetic insulator/normal metal hybrids , 2013, 1304.6151.

[24]  D. Apalkov,et al.  Matching domain-wall configuration and spin-orbit torques for efficient domain-wall motion , 2012, 1210.3049.

[25]  Parkin,et al.  Systematic variation of the strength and oscillation period of indirect magnetic exchange coupling through the 3d, 4d, and 5d transition metals. , 1991, Physical review letters.

[26]  Parkin,et al.  Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. , 1990, Physical review letters.

[27]  D. Ralph,et al.  Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. , 2012, Physical review letters.

[28]  D. Ralph,et al.  Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum , 2012, Science.

[29]  Stéphane Auffret,et al.  Spin-orbit torque magnetization switching controlled by geometry. , 2016, Nature nanotechnology.

[30]  F. Freimuth,et al.  Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures. , 2013, Nature nanotechnology.

[31]  H. Ohno,et al.  Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO. , 2012, Nature materials.