Measurements of the Forces in Protein Interactions with Atomic Force Microscopy

[1]  J. Israelachvili Intermolecular and surface forces , 1985 .

[2]  H Schindler,et al.  Simultaneous height and adhesion imaging of antibody-antigen interactions by atomic force microscopy. , 1998, Biophysical journal.

[3]  H. Butt,et al.  Measuring local surface charge densities in electrolyte solutions with a scanning force microscope. , 1992, Biophysical journal.

[4]  S. McLaughlin,et al.  The electrostatic properties of membranes. , 1989, Annual review of biophysics and biophysical chemistry.

[5]  M. Radmacher,et al.  Imaging soft samples with the atomic force microscope: gelatin in water and propanol. , 1995, Biophysical journal.

[6]  D. Webster,et al.  Antibody-antigen interactions , 1994 .

[7]  M. Rief,et al.  Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. , 1999, Journal of molecular biology.

[8]  M Heim,et al.  Scanning tunneling microscopy of insulators and biological specimens based on lateral conductivity of ultrathin water films. , 1994, Science.

[9]  H. Gaub,et al.  Atomic force microscope imaging contrast based on molecular recognition. , 1997, Biophysical journal.

[10]  J B Hurley,et al.  Recoverin: a calcium sensitive activator of retinal rod guanylate cyclase , 1991, Science.

[11]  Matthias Rief,et al.  Sensing specific molecular interactions with the atomic force microscope , 1995 .

[12]  H Schindler,et al.  Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[13]  J. Bechhoefer,et al.  Calibration of atomic‐force microscope tips , 1993 .

[14]  G. Semenza,et al.  Measuring elasticity of biological materials by atomic force microscopy , 1998, FEBS letters.

[15]  H Kaltner,et al.  Differences in zero-force and force-driven kinetics of ligand dissociation from beta-galactoside-specific proteins (plant and animal lectins, immunoglobulin G) monitored by plasmon resonance and dynamic single molecule force microscopy. , 2000, Archives of biochemistry and biophysics.

[16]  Andres F. Oberhauser,et al.  The molecular elasticity of the extracellular matrix protein tenascin , 1998, Nature.

[17]  C Chothia,et al.  The molecular structure of cell adhesion molecules. , 1997, Annual review of biochemistry.

[18]  A. Ikai,et al.  Mechanical unfolding of a2‐macroglobulin molecules with atomic force microscope , 1996 .

[19]  A. Gewirth,et al.  In Situ Atomic Force Microscopy of Underpotential Deposition of Ag on Au(111) , 1992 .

[20]  M. Burger,et al.  Involvement of carbohydrates as multiple low affinity interaction sites in the self-association of the aggregation factor from the marine sponge Microciona prolifera. , 1987, The Journal of biological chemistry.

[21]  A. Oberhauser,et al.  Atomic force microscopy captures length phenotypes in single proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[22]  M. Yamazaki,et al.  Mechanical unfolding of single filamin A (ABP‐280) molecules detected by atomic force microscopy , 2001, FEBS letters.

[23]  P Bongrand,et al.  Measuring bonds between surface-associated molecules. , 1996, Journal of immunological methods.

[24]  V. Hlady,et al.  Effects of Discrete Protein-Surface Interactions in Scanning Force Microscopy Adhesion Force Measurements. , 1995, Langmuir : the ACS journal of surfaces and colloids.

[25]  H. Hertz Ueber die Berührung fester elastischer Körper. , 1882 .

[26]  A. Ikai,et al.  Unfolding mechanics of holo‐ and apocalmodulin studied by the atomic force microscope , 2002, Protein science : a publication of the Protein Society.

[27]  A. Engel,et al.  Determining molecular forces that stabilize human aquaporin-1. , 2003, Journal of structural biology.

[28]  I R Vetter,et al.  Solid-state synthesis and mechanical unfolding of polymers of T4 lysozyme. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[29]  P. Wolynes,et al.  The energy landscapes and motions of proteins. , 1991, Science.

[30]  Richard M. Pashley,et al.  Direct measurement of colloidal forces using an atomic force microscope , 1991, Nature.

[31]  R. Yasuda,et al.  Strength and lifetime of the bond between actin and skeletal muscle alpha-actinin studied with an optical trapping technique. , 1996, Biochimica et biophysica acta.

[32]  M. Radmacher,et al.  Visualization and identification of intracellular structures by force modulation microscopy and drug induced degradation , 1994 .

[33]  E. Evans,et al.  Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. , 1995, Biophysical journal.

[34]  Timothy Senden,et al.  Experimental Determination of Spring Constants in Atomic Force Microscopy , 1994 .

[35]  P. Janmey,et al.  Domain unfolding in neurofilament sidearms: effects of phosphorylation and ATP , 2002, FEBS letters.

[36]  C. Bustamante,et al.  Chirality of DNA supercoiling assigned by scanning force microscopy. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[37]  W. Fritzsche,et al.  Mapping elasticity of rehydrated metaphase chromosomes by scanning force microscopy. , 1997, Ultramicroscopy.

[38]  P K Hansma,et al.  Stepwise unfolding of titin under force-clamp atomic force microscopy. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[39]  T. Ando,et al.  Scanning force microscopy of the interaction events between a single molecule of heavy meromyosin and actin. , 1997, Biochemical and biophysical research communications.

[40]  P. Hansma,et al.  A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy , 1993 .

[41]  L. Goldstein,et al.  Use of cationized ferritin as a label of negative charges on cell surfaces. , 1972, Journal of ultrastructure research.

[42]  C. Rotsch,et al.  Mapping Local Electrostatic Forces with the Atomic Force Microscope , 1997 .

[43]  Van Oss Cj Nature of specific ligand-receptor bonds, in particular the antigen-antibody bond. , 2000 .

[44]  H. Hansma,et al.  Segmented nanofibers of spider dragline silk: Atomic force microscopy and single-molecule force spectroscopy , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[45]  A. Plückthun,et al.  Antigen binding forces of individually addressed single-chain Fv antibody molecules. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[46]  G. I. Bell Models for the specific adhesion of cells to cells. , 1978, Science.

[47]  M. Hegner,et al.  Specific antigen/antibody interactions measured by force microscopy. , 1996, Biophysical journal.

[48]  Jie Yang,et al.  The binding potential between the cholera toxin B-oligomer and its receptor. , 2003, Biochemistry.

[49]  D. Anselmetti,et al.  Binding strength between cell adhesion proteoglycans measured by atomic force microscopy , 1995, Science.

[50]  Hermann E. Gaub,et al.  Adhesive forces between ligand and receptor measured by AFM , 1994 .

[51]  Timothy Senden,et al.  Measurement of forces in liquids using a force microscope , 1992 .

[52]  P. K. Kuo,et al.  Nanometer-scale Elasticity Measurements on Organic Monolayers Using Scanning Force Microscopy , 1997 .

[53]  M. Radmacher,et al.  Measuring the Elastic Properties of Thin Polymer Films with the Atomic Force Microscope , 1998 .

[54]  M. Radmacher,et al.  From molecules to cells: imaging soft samples with the atomic force microscope. , 1992, Science.

[55]  B G De Grooth,et al.  Biomolecular interactions measured by atomic force microscopy. , 2000, Biophysical journal.

[56]  M A Horton,et al.  Single integrin molecule adhesion forces in intact cells measured by atomic force microscopy. , 1999, Biochemical and biophysical research communications.

[57]  J. Hoh,et al.  Relative surface charge density mapping with the atomic force microscope. , 1999, Biophysical journal.

[58]  H Schindler,et al.  Cadherin interaction probed by atomic force microscopy. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Dennis E Discher,et al.  Cooperativity in forced unfolding of tandem spectrin repeats. , 2003, Biophysical journal.

[60]  S Lees,et al.  Measuring the microelastic properties of biological material. , 1992, Biophysical journal.

[61]  E. Gundelfinger,et al.  Intracellular neuronal calcium sensor proteins: a family of EF-hand calcium-binding proteins in search of a function , 1999, Cell and Tissue Research.

[62]  M. Rief,et al.  The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by atomic force microscopy. , 1998, Biophysical journal.

[63]  E. Bamberg,et al.  Force measurements on myelin basic protein adsorbed to mica and lipid bilayer surfaces done with the atomic force microscope. , 1999, Biophysical journal.

[64]  P. Hansma,et al.  The scanning ion-conductance microscope. , 1989, Science.

[65]  A Leung,et al.  Detachment of agglutinin-bonded red blood cells. I. Forces to rupture molecular-point attachments. , 1991, Biophysical journal.

[66]  Ansgar Philippsen,et al.  Imaging the electrostatic potential of transmembrane channels: atomic probe microscopy of OmpF porin. , 2002, Biophysical journal.

[67]  A. Engel,et al.  The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions. , 1997, Biophysical journal.

[68]  V. Hlady,et al.  Adhesion Force Measurements Using an Atomic Force Microscope Upgraded with a Linear Position Sensitive Detector. , 1994, Langmuir : the ACS journal of surfaces and colloids.

[69]  M. Miles,et al.  Exploring the molecular adhesion of ocular mucins. , 2001, Biomacromolecules.

[70]  P Kolb,et al.  Energy landscape of streptavidin-biotin complexes measured by atomic force microscopy. , 2000, Biochemistry.

[71]  J. Baldeschwieler,et al.  Imaging spectroscopy with the atomic force microscope , 1994 .

[72]  Charles M. Lieber,et al.  Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology , 1998, Nature.

[73]  Cheng Zhu,et al.  Direct observation of catch bonds involving cell-adhesion molecules , 2003, Nature.

[74]  H. Gaub,et al.  Adhesion forces between individual ligand-receptor pairs. , 1994, Science.

[75]  I. Checiu,et al.  Quantitative and qualitative approach of glycan-glycan interactions in marine sponges. , 2003, Biochimie.

[76]  J. Zlatanova,et al.  Single molecule force spectroscopy in biology using the atomic force microscope. , 2000, Progress in biophysics and molecular biology.

[77]  Richard Nuccitelli,et al.  AN ULTRASENSITIVE VIBRATING PROBE FOR MEASURING STEADY EXTRACELLULAR CURRENTS , 1974, The Journal of cell biology.

[78]  M. Rief,et al.  Reversible unfolding of individual titin immunoglobulin domains by AFM. , 1997, Science.

[79]  Richard M. Pashley,et al.  DLVO and hydration forces between mica surfaces in Li+, Na+, K+, and Cs+ electrolyte solutions: A correlation of double-layer and hydration forces with surface cation exchange properties , 1981 .

[80]  A. C. Hillier,et al.  Measurement of Double-Layer Forces at the Electrode/Electrolyte Interface Using the Atomic Force Microscope: Potential and Anion Dependent Interactions , 1996 .

[81]  I. N. Sneddon The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile , 1965 .

[82]  J. Fritz,et al.  Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[83]  Manfred Radmacher,et al.  Measuring the elastic properties of living cells by the atomic force microscope. , 2002, Methods in cell biology.

[84]  R. Newman,et al.  Scanning tunneling microscopy and spectroscopy , 1994 .

[85]  V. Moy,et al.  Cross-linking of cell surface receptors enhances cooperativity of molecular adhesion. , 2000, Biophysical journal.

[86]  E. Padlan,et al.  Antibody-antigen complexes. , 1988, Annual review of biochemistry.

[87]  B G de Grooth,et al.  Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy. , 1994, Biophysical journal.

[88]  M. Davies,et al.  In situ observation of streptavidin‐biotin binding on an immunoassay well surface using an atomic force microscope , 1996, FEBS letters.

[89]  Klaus Schulten,et al.  Mechanical unfolding intermediates in titin modules , 1999, Nature.

[90]  J. Hoh,et al.  Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy , 1996 .

[91]  P K Hansma,et al.  Measuring the viscoelastic properties of human platelets with the atomic force microscope. , 1996, Biophysical journal.

[92]  J. Fritz,et al.  Probing single biomolecules with atomic force microscopy. , 1997, Journal of structural biology.

[93]  C. Salesse,et al.  Measurement of membrane binding between recoverin, a calcium-myristoyl switch protein, and lipid bilayers by AFM-based force spectroscopy. , 2002, Biophysical journal.

[94]  C. Drummond,et al.  Direct Force Measurements between Silica and Alumina , 1997 .

[95]  W F Heinz,et al.  Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope. , 1999, Trends in biotechnology.

[96]  M. Ward,et al.  Direct force measurements of insulin monomer-monomer interactions. , 1998, Biochemistry.

[97]  R. Miller,et al.  Submicron probe of polymer adhesion with atomic force microscopy: Dependence on topography and material inhomogeneities , 1991 .

[98]  J. Ramsden,et al.  Direct measurement of the viscoelasticity of adsorbed protein layers using atomic force microscopy. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[99]  T. Yanagida,et al.  Multiple- and single-molecule analysis of the actomyosin motor by nanometer-piconewton manipulation with a microneedle: unitary steps and forces. , 1996, Biophysical journal.

[100]  M. Sheetz,et al.  Force of single kinesin molecules measured with optical tweezers. , 1993, Science.

[101]  S. Biggs,et al.  Forces between silica surfaces in aqueous solutions of a weak polyelectrolyte , 1997 .

[102]  A. Ikai,et al.  Mapping of the receptor-associated protein (RAP) binding proteins on living fibroblast cells using an atomic force microscope. , 2003, Ultramicroscopy.

[103]  V. Moy,et al.  Force spectroscopy of the leukocyte function-associated antigen-1/intercellular adhesion molecule-1 interaction. , 2002, Biophysical journal.

[104]  J. Israelachvili,et al.  Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm , 1978 .

[105]  K. Svoboda,et al.  Biological applications of optical forces. , 1994, Annual review of biophysics and biomolecular structure.

[106]  Z. Shao,et al.  Biological atomic force microscopy: what is achieved and what is needed , 1996 .

[107]  G. Binnig,et al.  Tunneling through a controllable vacuum gap , 1982 .

[108]  David A. Kidwell,et al.  Sensing Discrete Streptavidin-Biotin Interactions with Atomic Force Microscopy , 1994 .

[109]  A. Pastore,et al.  The folding and stability of titin immunoglobulin-like modules, with implications for the mechanism of elasticity. , 1995, Biophysical journal.

[110]  H. Gaub,et al.  Intermolecular forces and energies between ligands and receptors. , 1994, Science.

[111]  Gil U. Lee,et al.  Direct measurement of the forces between complementary strands of DNA. , 1994, Science.