A note on generalized Robertson–Walker space-times

A generalized Robertson–Walker (GRW) space-time is the generalization of the classical Robertson–Walker space-time. In the present paper, we show that a Ricci simple manifold with vanishing divergence of the conformal curvature tensor admits a proper concircular vector field and it is necessarily a GRW space-time. Further, we show that a stiff matter perfect fluid space-time or a mass-less scalar field with time-like gradient and with divergence-free Weyl tensor are GRW space-times.

[1]  P. Chavanis Cosmology with a stiff matter era , 2014, 1412.0743.

[2]  P. Chavanis Partially relativistic self-gravitating Bose-Einstein condensates with a stiff equation of state , 2014, 1412.0005.

[3]  Bang‐Yen Chen A simple characterization of generalized Robertson–Walker spacetimes , 2014, 1411.0270.

[4]  R. M. Rubio,et al.  PARABOLICITY OF SPACELIKE HYPERSURFACES IN GENERALIZED ROBERTSON-WALKER SPACETIMES. APPLICATIONS TO UNIQUENESS RESULTS , 2013 .

[5]  K. Arslan,et al.  On generalized Robertson--Walker spacetimes satisfying some curvature condition , 2013, 1305.4304.

[6]  A. Romero,et al.  Constant mean curvature spacelike hypersurfaces in Lorentzian manifolds with a timelike gradient conformal vector field , 2011 .

[7]  B. Olea,et al.  Global decomposition of a Lorentzian manifold as a Generalized Robertson–Walker space , 2007, math/0701067.

[8]  E. García‐Río,et al.  Some remarks on locally conformally flat static space–times , 2005 .

[9]  Miguel Sánchez Caja On the geometry of generalized Robertson-Walker spacetimes: curvature and Killing fields , 1999 .

[10]  R. Deszcz,et al.  On curvature properties of certain generalized Robertson-Walker spacetimes , 1999 .

[11]  Miguel Sánchez Caja On the Geometry of Generalized Robertson-Walker Spacetimes: Geodesics , 1998 .

[12]  L. Alías,et al.  SPACELIKE HYPERSURFACES OF CONSTANT MEAN CURVATURE AND CALABI-BERNSTEIN TYPE PROBLEMS , 1997 .

[13]  Y. Zel’dovich A Hypothesis, Unifying the Structure and the Entropy of the Universe , 1972 .

[14]  Salomon Bochner,et al.  Curvature and Betti numbers , 1948 .

[15]  J. Aledo,et al.  UPPER AND LOWER BOUNDS FOR THE VOLUME OF A COMPACT SPACELIKE HYPERSURFACE IN A GENERALIZED ROBERTSON–WALKER SPACETIME , 2014 .

[16]  R. Deszcz,et al.  ON CURVATURE PROPERTIES OF QUASI-EINSTEIN HYPERSURFACES IN SEMI-EUCLIDEAN SPACES , 2001 .

[17]  Miguel Sánchez,et al.  Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes , 1995 .

[18]  A. Ge̖barowski Doubly warped products with harmonic Weyl conformal curvature tensor , 1994 .

[19]  A. Taub,et al.  Space-times containing perfect fluids and having a vanishing conformal divergence , 1967 .

[20]  K. Yano 72. On the Torse-forming Directions in Riemannian Spaces , 1944 .

[21]  K. Yano 142. Subprojective Transformations, Subprojective Spaces and Subprojective Collineations , 1944 .

[22]  K. Yano Concircular Geometry I. Concircular Transformations , 1940 .